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The development, characterization, and control of N-photon sources are instrumental for quantum
technological applications. This work constitutes a step forward in this direction, where we propose a
cavity quantum electrodynamics setup designed for the generation of photon pairs. We identify both the
regime where our system works as a deterministic down-converter of a single input photon and as an
optimal two-photon source under weak continuous driving. We use both the scattering and master equation
formalisms to characterize the system, and from their connection naturally arises a physical criterion
characterizing when weakly driven systems behave as continuous antibunched two-photon sources. We
also show that the outgoing photons share nontrivial quantum correlations in general. We provide a specific
implementation based on state-of-the-art superconducting circuits, showing how our proposal is within
the reach of current technologies. As an outlook, we show the proposal can be extended to achieve
deterministic conversion of a single photon into N photons.
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Single-photon sources [1] are one of the cornerstones of
many quantum information protocols [2,3]. The success in
the fabrication of these sources is built upon the simple
nonlinear systems required, e.g., a two-level system [4], and a
well-established characterization through the well-known
second-order coherence function [5] gð2ÞðτÞ (see definition
below), which yields gð2Þð0Þ ¼ 0 for a perfect single-photon
source. The extension to N-photon sources lies also at the
heart of many recent quantum technological applications
such as the generation of NOON states [6] instrumental for
quantum metrology [7], beating the diffraction limit [8], or
even biological purposes [9,10]. There exist several methods
to generate multiphoton states, e.g., probabilistic schemes
using down-converted photons [11] and postselection
[12–14], but at the price of an exponentially small proba-
bility. An alternative consists in using atomlike systems
strongly coupled to cavities [15] or biexciton states in
quantum dots systems [16–18]. The former has shown
spectacular advances in themicrowave regime for intracavity
fields [19,20], but its extension to traveling photons is so far
limited to single photons [21–24]. Therefore, the efficient
generation of multiphoton states is still a challenge which
attracts a lot of attention, with new theoretical proposals that
use Purcell enhancement on dressed atomic systems [25,26]
or atomic ensembles in waveguide QED [27]. Moreover, the
question on how to characterize continuous multiphoton
sources in a more economical way than performing full-state
tomography, is still open, with many different definitions in
the literature [25,26,28–31].
In this Letter, we introduce a cavity quantum electrody-

namics setup that deterministically converts a single photon

into an entangled two-photon state and does so within the
bad-cavity limit, that is, without requiring coherent inter-
actions to be stronger than cavity or emitter damping.We also
analyze the regime when the system is weakly driven and
show that the condition for deterministic down-conversion
also leads to an optimal continuous source of photon pairs.
From the connection between these two regimes, we also
propose a general criterion that characterizes when such
weakly driven systems behave as emitters of photon pairs in
well-defined pulses. Finally, we discuss possible implemen-
tations focusing on currently available circuit QED archi-
tectures and comment on the possibility to generalize our
results for the generation of N-photon states.
Let us first consider the general scheme for a source

depicted in Fig. 1(a). A nonlinear system S is coupled to
two (one-dimensional) baths [32]. The pump bath is used to
excite the system with, e.g., a continuous driving or pulses
with well-defined photon number, while the emitted light
is monitored through the signal bath. Working in a picture
rotating at some characteristic frequency of the system kp
that we will choose later (using ℏ ¼ c ¼ 1), and denoting
by fpk; skgk∈R the annihilation operators of the baths,
the Hamiltonian is given by H ¼ HS þHB þHSB, with
Hamiltonians HS and HB¼

R
dkkðp†

kpkþ s†kskÞ for system
and bath, respectively, which interact through

HSB ¼
Z

dk
! ffiffiffiffiffiffi

γp
2π

r
p†
kap þ

ffiffiffiffiffiffi
γs
2π

r
s†kas

#
þ H:c:; ð1Þ

where aj is the system operator that couples to the signal or
pump (j ¼ s=p) bath.
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We consider the cavity QED model depicted in Fig. 1(b)
as the system S, which we have designed to deterministically
convert single pump photons into signal photon pairs.
It consists of a four-level system with states fjgi;
jm1i; jm2i; jeig, coupled to two photonic modes in inde-
pendent cavities and a classical field. The pump mode, with
annihilation operator ap, is resonant with the jgi ↔ jei
transition. The signal mode, on the other hand, has annihi-
lation operator as and is resonant both with jgi ↔ jm1i and
jm2i ↔ jei. Finally, the classical field controls resonantly
the transition jm1i ↔ jm2i with a Rabi frequency Ωs, that
will allow us to tune between different regimes of emission
and, specifically, to induce deterministic down-conversion.
In a picture rotating at the pump frequency, the system is
then described by the Hamiltonian

HS ¼ gpa
†
pjgihejþΩsjm2ihm1j

þ gsa
†
sðjm2ihejþ jgihm1jÞ þ H:c: ð2Þ

The scattering formalism [33] is naturally suited for
analyzing processes such as the conversion of a given input
state jk1;…; kmip ¼ p†

k1
…p†

km
j0i with m incoming pump

photons with momenta fk1;…; kmg, into an outgoing
state jq1;…; qnis ¼ s†q1…s†qn j0iwith n signal photons with
momenta fq1;…; qng. All the asymptotic information
is contained in the so-called S matrix, defined as
S ¼ limtf→þ∞

ti→−∞ eiHBtfe−iHðtf−tiÞe−iHBti .
Let us study first the behavior of the system when excited

by a single pump photon of momentum ki, i.e., jkiip.
In order for the photon to be perfectly down-converted
to a signal photon pair, the condition phkfjSjkiip ¼ 0∀ kf
must be satisfied, that is, no photons are reflected in the
pump bath. We show analytically in the Supplemental
Material [34] that this condition can be satisfied under

resonant excitation ki ¼ 0 for a specific control drive
Ωs ¼ Ω2ph which reads

Ω2
2ph ≈ γ2s ½Γsð0Þ − Γp&=4Γp; ð3Þ

where we defined the Purcell-enhanced decay rates
through the pump or signal cavities, Γp ¼ 4g2p=γp and
ΓsðΩsÞ ¼ 4g2sγs=ðγ2s þ 4Ω2

sÞ, respectively, that we obtain
by adiabatically eliminating the cavity modes and the
intermediate levels [34]. Interestingly, Ω2ph corresponds
to the driving amplitude which makes these rates equal,
i.e., ΓsðΩ2phÞ ¼ Γp. This is a similar interference effect as
the one used in previous works [38–43], which we exploit
here to engineer perfect down-conversion even within
the bad-cavity limit gj ≪ γj (j ¼ p, s). Note that Eq. (3)
requires Γp < Γsð0Þ ¼ 4g2s=γs. Moreover, using scattering
theory, we can show [34] that the reflection coefficient
j
R
dkphkjSjkiipj2 has a Lorentzian shape as a function of

the incident momentum ki, with a width ∼Γp þ ΓsðΩsÞ,
which provides the bandwidth for efficient down-
conversion of single-photon pulses.
To further characterize the down-conversion process, we

calculate the outgoing two-photon wave function of the
signal field, defined as Ψ2phðx1; x2Þ ¼ h0jsðx1Þsðx2ÞSjkiip,
with sðxÞ ¼ ð2πÞ−1=2

R
dkskeikx annihilating signal excita-

tions in real space. We provide its complete expression in
[34], and here reproduce an approximate one in the bad-
cavity limit and at resonance ki ¼ 0, which reads

jΨ2phðx1; x2Þj2 ∝
$$$$e

−γsτ −
γs sinðΩsτÞ

2Ωs
e−ΓsðΩsÞτ=2

$$$$
2

; ð4Þ

where τ ¼ jx1 − x2j. This expression shows that the wave
function is indeed bunched, and therefore, the two output
signal photons propagate together. Moreover, it is non-
separable, that is, the photons within the pair share
entanglement. As shown in detail in [34], and following
a similar route to that used in optical parametric down-
conversion [44], we characterize this entanglement through
the Schmidt number, which allows us to perform efficient
analytical calculations by assuming the input wave packet
to have a Lorentzian spectral shape. We provide quantita-
tive details in [34], and here we just want to summarize our
main numerical findings: (i) the entanglement shows a
linear divergence with the inverse of the spectral width of
the input wave packet, and (ii) for most of the parameters,
the outgoing photons show strong nontrivial quantum
correlations, becoming nonentangled only for Ωs ¼ 0
and a specific width of the input wave packet. Note that
this entanglement is different from the one of parametric
sources such as those in [45], which are well described by
Gaussian correlations between continuous variables.
An alternative scenario is that in which the system is

continuously driven by a monochromatic laser at some

Non-linear systemPump Signal(a)

(b)

S

〉

〉e

g

FIG. 1. Scheme for photon-pair generation. (a) The nonlinear
system is driven through the pump bath (red) and the emission of
photons coming out through the signal bath (blue) is analyzed.
We depict the three relevant time scales that characterize the
emission in our system: the intrinsic time scale of the single-
photon wave packets (τB), and the separation between the pairs
(τA) and between the photons within the same pair (τin). (b) Non-
linear system that provides the interface between incoming and
outgoing photons.
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frequency ki through the pump bath (in the picture rotating
with kp). A standard approach in this context consists of
integrating the bath degrees of freedom, which results in a
master equation for the system’s state ρ [46,47]:

_ρ ¼ −i½HS þHD; ρ& þ
X

j¼s;p

γj
2
ð2ajρa†j − a†jajρ − ρa†jajÞ;

ð5Þ

where HD ¼ Ωpðe−ikita†p þ H:c:Þ is a driving term, being
Ωp its amplitude (taken real and positive without loss of
generality). The statistics of the field emitted through the
baths can be analyzed through multitime correlation
functions which, using input-output theory [46,47],
can be related to system correlators GðnÞ

j ðτ1;…; τnÞ ¼
ha†jðτ1Þ…a†jðτnÞajðτnÞ…ajðτ1Þi, where τ1 < … < τn with
the operators defined in the Heisenberg picture and j ¼ s,
p. The master equation allows evaluating these functions
via the quantum regression theorem [46,47].
Even though scattering and master equation formalisms

seem to apply to very different scenarios, they are very
much connected [32,48,49]. For example, let us consider a
situation in which H connects pump photons with signal
photon pairs, which is the case of our system. Using the
various definitions provided above, we find [34] a relation
between scattering amplitudes and correlation functions
of such a system under weak driving. In the case of the
second-order correlation function, to first nontrivial order
in Ωp we get [34]

Gð2Þ
s ðτÞ ¼ lim

t→∞
Gð2Þ

s ðt; tþ τÞ ∝ Ω2
pjΨ2phðx1; x2Þj2: ð6Þ

We find a similar connection between the photon-pair
second-order correlation function [25] and the four-photon
wave function Ψ4phðx1; x2; x3; x4Þ ¼ h0jsðx1Þsðx2Þsðx3Þs
ðx4ÞSjki; kiip. This reads [34]

Gð2Þ
s;2ðτÞ ¼ lim

t→∞
Gð4Þ

s ðt; t; tþ τ; tþ τÞ

∝ Ω4
pjΨ4phðx1; x1; x2; x2Þj2: ð7Þ

Within the scattering formalism, it is clear that the
system will be an ideal single photon-pair source whenever
jΨ2phðx1; x2Þj has an absolute maximum around x1 ¼ x2,
while jΨ4phðx1; x1; x2; x2Þj shows a wide dip at that point,
meaning that the system scatters photons in well-spaced
wave packets containing two signal photons. Therefore,
the equivalences above naturally give rise to a physical
criterion characterizing when the weakly driven system
is emitting light in photon pairs: Gð2Þ

s ð0Þ > Gð2Þ
s ðτÞ, while

keeping Gð2Þ
s;2ð0Þ < Gð2Þ

s;2ðτÞ, that is, it has to show bunching
of single photons, but antibunching between photon pairs.
Moreover, the antibunching time scale must be larger than
the bunching one, so that the separation between the pairs is
guaranteed. This connection provides, then, formal grounds
to the use in weakly driven systems of the photon-pair
second-order correlation function [25].
Let us now analyze the behavior of our system under

resonant continuous weak driving. In Fig. 2(a) we show the
dependence of the main steady-state observables on the
control drive Ωs, as obtained from the master equation (5)
or its connection with scattering theory [34], and using
representative parameters within the bad-cavity limit. We
represent various populations nj (j ¼ p for pump, s for
signal, and e for excited state), including the one for the
output pump mode ap;out ¼ 2Ωp=γp − iap, as well as

normalized correlation functions gð2Þj ðτÞ ¼ Gð2Þ
j ðτÞ=n2j

and gð2Þs;2ðτÞ ¼ Gð2Þ
s;2ðτÞ=½G

ð2Þ
s ð0Þ&2 at τ ¼ 0. We can differ-

entiate three regimes of emission, best identified through
the second-order correlation function of the pump.
(i) gð2Þp ð0Þ ¼ 1, green background: This region shows a
transition from gð2Þs ð0Þ < 1, where the signal cavity is,
therefore, emitting single photons, to gð2Þs ð0Þ > 1, which

FIG. 2. (a) Main steady-state observables as a function of the control drive Ωs. Parameters are γp ¼ 20γs, Ωp ¼ 0.01γs,
gp ¼ gs ¼ 0.1γs. (b) and (c) show, respectively, Gð2Þ

s ðτÞ (or equivalently two-photon wave function) normalized to its maximal value

and gð2Þs;2ðτÞ (or equivalently four-photon wave function) as a function of τ for Ωs changing logarithmically from 0.001γs to 100γs (in
color) and for the optimal conditionΩ2ph (dashed black) defined in Eq. (3). Notice that in (c) the curves from Ωs ¼ 10−3 to 0.1 and 10 to
100 overlap. We do not show the purity of two-photon emission [25] in the plots because, due to the way the system is engineered, it is
100% for all parameters.
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corresponds to correlated emission from the cascade
through the intermediate levels. However, when looking
at the dynamics of Gð2Þ

s ðτÞ in Fig. 2(b), we can see how the
maximum two-photon probability occurs at τ > 0, and
therefore it is still not a good photon-pair source, since this
indicates that the photons inside the pair are spatially
separated. (ii) gð2Þp ð0Þ < 1, blue background: This region
shows gð2Þs;2ð0Þ < gð2Þs;2ðτÞ as shown in Fig. 2(c), maximal

Gð2Þ
s ðτÞ very close to τ ¼ 0, and a bunching time scale

much shorter than the antibunching one of gð2Þs;2ðτÞ.
Therefore, photons inside a pair are emitted together and
the pairs are well separated, so the system behaves as a
good photon-pair source according to the criterion defined
above. Moreover, this region features a maximal signal
population ns (and minimal np;out) at the optimum control
drive Ω2ph, yielding then a maximum photon-pair emission

rate given by γsns. (iii) g
ð2Þ
p ð0Þ > 1, red background: With

photon-pair emission but with a decrease of its rate.
In order to gain an understanding of the two-photon

emission process, we analyze the relevant time scales for
the emission of photon pairs, which are schematically
depicted in Fig. 1(a), and we define in what follows. Once
the system arrives at jei it relaxes to jgi in a time τA (acting
then as the reloading time), either emitting a pump photon
or two cascaded signal photons separated by a time τin.
Denoting by τB the intrinsic width of the single-photon
wave packets, it is then clear that τin < τB < τA is required
for the system to act as an antibunched two-photon source.
We have made a detailed analysis of these time scales [34],
and here we focus on the results found within the bad-
cavity limit (gj ≪ γj) and with a strong-enough control
drive (Ωs ≫ g2j=γj). In this regime, it is shown that τin
scales as Ω−1

s , and hence the delay between photons within
the same pair can be made arbitrarily small by increasing
the control drive. Under such circumstances, we get
τB ∼ γ−1s , which determines the time scale of the bunching
in Gð2Þ

s ðτÞ, and provides the requirement Ωs > γs. Finally,
τA is determined by the decay rate from jei to jgi through
the p and s channels, leading to τ−1A ≈ Γp þ ΓsðΩsÞ. The
different dependence of the scaling of these time scales
with Ωs explains the transition between the different
regimes in Fig. 2.
To further estimate the feasibility of our proposal, we

now analyze the effect of having spontaneous emission
from jei to jgi through other dissipative channels.
Assuming such processes to occur at the rate γ' ≪ γp;s,
this time scale contributes to the reloading time as τ−1A ≈
ΓsðΩsÞ þ Γp þ γ' [34]. It is then clear that as long as
γ' ≪ γs, the condition τA ≪ fτB; τing will then still be
satisfied. Such an intuitive result is confirmed numerically
[34], where we see that, as expected, by increasing γ' above
γs the system shows a transition from antibunched to
bunched photon pairs, as τA becomes comparable to τB.

One versatile platform to implement our ideas is circuit
QED [50–52], where we can use long-lived qubits, single-
mode cavities, and open transmission lines to design our
proposed setup. For concreteness, a specific architecture
is depicted in Fig. 3(a), although it is important to note
that any other architecture containing the ingredients and
couplings that we introduce would work as well, as our
ideas do not rely on the details of the implementation. Two
identical qubits (transmons [53,54] in the figure, details can
be found in [34]) with energies ωt are capacitively coupled
through an xx interaction ωtκσ

ð1Þ
x σð2Þx =2, whose spectrum

is shown in Fig. 3(b). The desired four level structure
appears between the states jm2;1i ∝ j↑↓i( j↓↑i and
je; gi ∝ ðκ−1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ κ−2
p

Þj↑↑iþ j↓↓i, with respective
energies E2;1 ¼ (ωtκ and Ee;g ¼ (ωt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
. Here, j↓i

and j↑i are the ground and excited qubit states. Two single-
mode LC resonators with frequencies ωp ¼ Ee − Eg and
ωs ¼ Ee − E2 ¼ E1 − Eg provide the pump and signal
modes, respectively, while an additional strongly driven
resonator with frequency ωL ¼ E2 − E1 is used to control
the intermediate transition. The pump and classical cavities
are inductively coupled each to one transmon via xz
interactions, g2pðap þ a†pÞσð2Þz and g1LðaL þ a†LÞσ

ð1Þ
z .

Finally, the signal cavity is capacitively coupled through
an xx interaction to one of the transmons, g1sðas þ a†sÞσð1Þx .
Working in the κ ≪ 2 regime and provided
fg1Lα; g2pκ; g1s=

ffiffiffi
2

p
g ≪ 2ωtκ, these types of couplings

ensure that in the eigenbasis of the two-qubit system the
full system Hamiltonian takes the form of Eq. (2), with
Ωs ¼ g1Lα, gp ¼ −g2pκ, and gs ¼ g1s=

ffiffiffi
2

p
[34]—α being

the number of excitations in the classical cavity that
can be controlled via the external driving. Using γp;s on
the tens of MHz range, the spontaneous emission of the

0.0 1.0

–1.0

0.0

1.0

(a)

1

2x xx x z x

z
x

x x

x x

transmon
transmon

4-level system

Open transmision line Open transmision line

Pump cavity
Signal cavity

External drivingCavity for the 
intermediate
 transition

(b)

FIG. 3. (a) Circuit QED implementation: two coupled transmon
qubits provide the desired four-level structure (b), while three LC
circuits provide the single-mode cavities playing the role of
signal, pump, and the classical driving for the intermediate
transition. The baths are implementedwith open transmission lines.
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superconducting qubits gets orders of magnitude below
such large cavity decay rates, while the cooperativities
Cj ¼ 4g2j=γjγ

' (j ¼ p, s) can be made very large since
couplings g2p and g1s up to tens of MHz are routinely
achieved in current experiments. With these parameters,
at the optimal point Ωs ¼ Ω2ph, the rate of photon-pair
emission γsns can get up to the 0.1–10 kHz range
for Ωp=γs ∈ ½10−2; 10−1&.
Other platforms may fulfill our requisites in the optical

domain, such as natural or artificial atoms using its
“butterflylike" level structure, coupled to nanophotonic
cavities. Current experiments with atoms [55] show coop-
erativities around 10, with decay rates up to 25 GHz,
which would lead to photon-pair emission rates in the
0.1–10 MHz range, which already exceed current para-
metric down-conversion technologies.
Summing up, we have designed a cavity QED setup that

acts as a deterministic down-converter when excited by
single photons or as a continuous entangled photon-pair
source when weakly driven, and does so within the bad-
cavity limit. From the connection between the two regimes,
we also formalized a criterion characterizing photon-pair
sources under weak driving, based on the dynamics of the
standard correlation function gð2ÞðτÞ and the generalized
one of the pairs, gð2Þ2 ðτÞ, first introduced in [25]. Our
analysis of the figures of merit and scaling with different
parameters has shown the feasibility of the proposal, for
which we have designed a concrete implementation based
on superconducting circuits. We believe that our charac-
terization, analysis, and implementation proposal represent
an important step forward in the fabrication of efficient
two-photon sources. We also foresee its extension to
N-photon states, and, as a first step, we show in [34] how
to obtain deterministic conversion of single photons into
N photons, by usingmore elaborate schemes with 2N levels.
We will analyze such setups in depth in future works.
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Note added.—Recently, a preprint appeared proposing an
alternative route to deterministic down-conversion [43].
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2F́ısica Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain

3Institute for Theoretical Physics II, Universität Erlangen-Nürnberg, Staudtstrasse 7, 91058 Erlangen, Germany

This supplemental material is divided in four main sections. The first one, Sec. SM1, is devoted
to the scattering formalism. After introducing the S-matrix (Sec. SM1A), we proceed to connect
the multi-time correlation functions of a weakly-driven system with the scattering wave functions
(Sec. SM1B). We then explain how to compute scattering amplitudes (Sec. SM1C) and wave func-
tions (Sec. SM1D) in an operationally simple manner, and apply those methods to our cavity QED
model (Sec. SM1E) proving that it can behave as a deterministic down-converter of entangled pho-
ton pairs (a property characterized in Sec. SM1F), and providing an analytical analysis of the
photon-pair emission timescales. In Sec. SM2 we provide an alternative formalism based on the
master equation, which allows us to get insight into the properties of our cavity QED setup, includ-
ing analytical expressions for its main observables. Sec. SM3 shows how our proposed circuit QED
architecture provides an implementation of the model we are looking for. Sec. SM4 is the final one,
which we use to show how our ideas for deterministic down-conversion can be extended to N -photon
sources.

⇤
All the authors contributed equally to the project.



2

SM1. SCATTERING THEORY RESULTS

A. Brief introduction to the S-matrix

The scattering formalism describes the asymptotic behaviour of free fields whose dynamics is governed by a Hamil-
tonian HB , after having been scattered by some interacting Hamiltonian H. We use in particular the form of the
Hamiltonian introduced in the main text

H = HS +

Z

dk k(p†kpk + s†ksk)
| {z }

HB

+

Z

dk

✓

r

�p

2⇡
p†kap +

r

�s

2⇡
s†kas + H.c.

◆

| {z }

HSB

. (SM1)

with a system Hamiltonian HS independent of the bath operators (the fields), which interact with the system through
HSB .

Within the scattering formalism, all the asymptotic information can be extracted from the so-called S-matrix,
defined by [1]

S = lim
tf!+1
ti!�1 eiHBtf e�iH(tf�ti)e�iHBti = lim

t!1
T
h

e�i
R t
�t

˜H(t0)dt0
i

, (SM2)

where we have moved to the interaction picture, where the Hamiltonian is transformed into

H̃(t) = eiHBt(HS + HSB)e�iHBt = HS +

Z

dk

✓

r

�p

2⇡
p†keiktap +

r

�s

2⇡
s†keiktas + H.c.

◆

. (SM3)

In addition, we have made use of the identity

T
h

e�i
R t
t0

dt0O(t0)
i

= e�iO0tT


exp

✓

�i

Z t

t0

dt0eiO0t0O
1

(t0)e�iO0t0
◆�

eiO0t0 , (SM4)

valid for any operator O(t) = O
0

+ O
1

(t), where T (time-ordering operator) orders Heisenberg-picture operators A(t)
and B(t) as

T [A(t
1

)B(t
2

)] =

⇢

A(t
1

)B(t
2

) if t
1

> t
2

B(t
2

)A(t
1

) if t
1

< t
2

, (SM5)

allowing to write the Dyson series in the compact form

T
h

e�i
R t
t0

dt0A(t0)
i

= 1�i

Z t

t0

dt
1

A(t
1

)�
Z t

t0

dt
1

Z t1

t0

dt
2

A(t
1

)A(t
2

)+i

Z t

t0

dt
1

Z t1

t0

dt
2

Z t2

t0

dt
3

A(t
1

)A(t
2

)A(t
3

)+... (SM6)

B. Connection between the correlation functions and scattering wave functions

In this section we connect the wave functions which are naturally defined within the scattering formalism with
correlation functions of the driven system, which are the objects naturally measured in quantum-optical experiments.
Consider then the n-th correlation function of the field leaking out of the system through the signal bath, which can
be written as [2, 3]

G(n)
out

(⌧
1

, ⌧
2

, ..., ⌧n) = h0|s†
out

(⌧
1

)...s†
out

(⌧n)s
out

(⌧n)...s
out

(⌧
1

)|0i (SM7)

where |0i is the state with no excitations both in the system and the baths, we have assumed ⌧
1

< ... < ⌧n, and
defined the output field

s
out

(⌧) = (2⇡)�1/2 lim
t!1

Z

dk sk(t)e�ik(⌧�t), (SM8)

with sk(t) = T
h

ei
R t
0 dt0[H+HD(t0)]

i

skT
h

e�i
R t
0 dt0[H+HD(t0)]

i

a bath operator in the Heisenberg picture, where we have

included a driving term HD(t) = ⌦p

�

e�ik0ta†
p + H.c.

�

to the total Hamiltonian. Note that the well-known input-
output relation [2, 3] s

out

(⌧) + s
in

(⌧) =
p
�sas(⌧), with

s
in

(⌧) = (2⇡)�1/2 lim
t!0

Z

dk sk(t)e�ik(⌧�t), (SM9)
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together with [as(⌧), sin(⌧ 0)] = 0 for ⌧ < ⌧ 0 (causality) and the fact that the signal bath is assumed to be in vacuum

at the origin of times, allows connecting G(n)
out

with the correlation functions of system operators that we defined in
the main text,

G(n)
out

(⌧
1

, ⌧
2

, ..., ⌧n) = �n
s

⌦

a†
s(⌧1)...a

†
s(⌧n)as(⌧n)...as(⌧1)

↵

| {z }

G(n)
s (⌧1,⌧2,...,⌧n)

. (SM10)

The correlation function can be written as

G(n)
out

(⌧
1

, ⌧
2

, ..., ⌧n) = lim
t!1

tr
n

s(xn)...s(x
1

)T
h

ei
R t
0 dt0[H+HD(t0)]

i

|0ih0| T
h

e�i
R t
0 dt0[H+HD(t0)]

i

s†(x
1

)...s†(xn)
o

,

(SM11)
where s(x) = (2⇡)�1/2

R

dk skeikx annihilates signal-field excitations in real space, and xn = t�⌧n. Let us now perform
two unitary transformations inside the trace, which will allow us to easily get to the expression we are looking for.
First, we apply U = exp(�iH

0

t) with H
0

=
R

dk kp†kpk, which turns the correlation function into

G(n)(⌧
1

, ⌧
2

, ..., ⌧n) = lim
t!1

tr
n

s(xn)...s(x
1

)T
h

e�i
R t
0

˜H(t0)dt0
i

|0ih0| T
h

ei
R t
0

˜H(t0)dt0
i

s†(x
1

)...s†(xn)
o

, (SM12)

with

H̃(t) = U†(H + HD)U � H
0

= HS + ⌦p

�

e�ik0ta†
p + H.c.

�

+

Z

dk ks†ksk +

Z

dk

✓

r

�p

2⇡
p†keiktap +

r

�s

2⇡
s†kas + H.c.

◆

,

(SM13)
where we have made use of (SM4). Let us now apply a displacement transformation D on mode k

0

of the pump bath,
defined through D†pkD = pk + ↵k0�(k � k

0

) with ↵k0 =
p

2⇡/�p⌦p, which making use of (SM4) again, turns the
correlation function into

G(n)
out

(⌧
1

, ⌧
2

, ..., ⌧n) = lim
t!1

tr
n

s(xn)...s(x
1

)T
h

e�i
R t
0

¯H(t0)dt0
i

|↵k0ih↵k0 | T
h

ei
R t
0

¯H(t0)dt0
i

s†(x
1

)...s†(xn)
o

, (SM14)

where |↵k0i denotes the coherent state of the pump mode k
0

, and

H̄(t) = D†H̃D = HS +

Z

dk ks†ksk +

Z

dk

✓

r

�p

2⇡
p†keiktap +

r

�s

2⇡
s†kas + H.c.

◆

. (SM15)

Using now the expansion of the coherent states in the Fock basis, and undoing the U transformation, we obtain

G(n)
out

(⌧
1

, ⌧
2

, ..., ⌧n) = e�↵2
k0

1
X

lm=0

↵m+l
k0p
l!m!

lim
t!1

h0| pm
k0

eiHts†(x
1

)...s†(xn)s(xn)...s(x
1

)e�iHtp†lk0
|0i . (SM16)

This expression is completely general, and its connection to scattering theory is not entirely clear, since the S-
matrix is defined as S = lim

tf!+1
ti!�1 eiHBtf e�iH(tf�ti)e�iHBti , while what appears on it is limt!1 e±iHt. Let us then

particularize the expression to the case of interest for us, one in which the Hamiltonian H can only generate signal
photons pair by pair from pump photons. Under such conditions, it is clear that the leading ↵k0 -order in the previous
expression is given by

G(n)
out

(⌧
1

, ⌧
2

, ..., ⌧n) =
↵2m̄

k0

m̄!
lim

t!1

�

�

�

h0| s(xn)...s(x
1

)e�iHtp†m̄k0
|0i

�

�

�

2

, (SM17)

where m̄ is the minimum number of pump photons capable of generating n, that we assume to be an even number,
signal photons, that is, m̄ = n/2. Now, it is also clear from the definition of the S-matrix that the matrix element in
this expression and h0| s(xn)...s(x

1

)Sp†m̄k0
|0i are equivalent up to a phase. Therefore, combining this expression with

(SM10), we obtain the final result

G(n)
s (⌧

1

, ⌧
2

, ..., ⌧n) / ⌦2m̄
p lim

t!1
|h0| s(xn)...s(x

1

)Sp†m̄k0
|0i|2. (SM18)

which particularized to to n = 2 and 4 coincide with the expressions provided in the main text. This expression
connects the multi-time correlation functions of a weakly driven system with multi-photon wave functions obtained
from the scattering theory, what we use in the main text to build a criterion characterizing when the system behaves
as a proper single two-photon source.
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C. Evaluation of scattering amplitudes

There exist severals methods to retrieve information from the S-matrix [4–8], but here we will use the method
introduced in Ref. [6, 7], that we describe now. Within the scattering formalism one is naturally interested in
how incoming pump-bath photons with well-defined momenta scatter into outgoing photons in the pump and signal
baths (see Fig. 1 in the main text). The probabilities associated to such processes are encoded in the so-called
scattering amplitudes, which are nothing but the S-matrix elements connecting the desired Fock states of the baths.
For illustration, we calculate in detail the simplest among these proceses, namely the so-called reflection amplitude,
which is the probability amplitude of a pump photon with momentum ki to transform into an outgoing pump photon
with momentum kf . This is given by

phkf |S|kiip = lim
t!1

h0|pkfT
h

e�i
R t
�t

˜H(t0)dt0
i

p†ki
|0i , (SM19)

where we remind that |0i is the state with no excitations, that is, the common ground state of HB and HS . This
expression depends on both bath and system operators, and our approach is designed to transform it in such a way
that it can be evaluated simply from matrix elements of system operators. In order to do so, we proceed as follows.
First, note that the previous expression can be written with the use of functional derivatives as

phkf |S|kiip = lim
t!1

�

�J⇤
kf

�

�Jki

h0|e
R
dkJ⇤

kpkT
h

e�i
R t
�t

˜H(t0)dt0
i

e
R
dkJkp†

k |0i

�

�

�

�

�

{Jk,J⇤
k}!0

(SM20)

where {Jk, J⇤
k} are treated as independent classical currents for each bath mode, and we remind that the functional

derivative acts as

�

�Jk0
Jk = �(k � k0) =) �

�Jk0
exp

✓

Z

dkJkAk

◆

= exp

✓

Z

dkJkAk

◆

Ak0 , (SM21)

valid for any operator Ak (and similarly for J⇤
k ). Introducing the displacement operator for the pump bath modes

D({Jk}) = exp

✓

Z

dkJkp†k

◆

exp

✓

Z

dkJ⇤
kpk

◆

exp

✓

�1

2

Z

dk|Jk|2
◆

= exp



Z

dk
⇣

Jkp†k � J⇤
kpk

⌘

�

, (SM22)

which transforms the Hamiltonian as H̄(t) = D†({Jk})H̃(t)D({Jk}) = H̃(t) + HD(t), that is, it adds a driving term

HD(t) =

Z

dk

r

�p

2⇡

�

J⇤
keiktap + Jke�ikta†

p

�

, (SM23)

we can rewrite Eq. (SM20) as

phkf |S|kiip = lim
t!1

�

�J⇤
kf

�

�Jki

h0|T
h

e�i
R t
�t dt1 ¯H(t1)

i

|0ie
R
dk|Jk|2

�

�

�

�

�

{Jk,J⇤
k}!0

, (SM24)

and then come back from the interaction picture to get

phkf |S|kiip = lim
t!1

�

�J⇤
kf

�

�Jki

h0|T
h

e�i
R t
�t dt1[H+HD(t1)]

i

|0ie
R
dk|Jk|2

�

�

�

�

�

{Jk,J⇤
k}!0

. (SM25)

Next we use the identity (SM4), together the Dyson series (SM6) for the remaining time-ordered exponential, and

the Taylor series of the normalization factor e
R
dk|Jk|2 , so that acting with the functional derivatives we easily obtain

phkf |S|kiip = �(ki � kf ) � �p

2⇡

Z 1

�1
dt

2

Z 1

�1
dt

1

h0|T [ap(t2)a
†
p(t1)]|0ieikf t2�ikit1 , (SM26)

where given a Schrödinger-picture operator A, we have defined the Heisenberg-picture operator A(t) = eiHtAe�iHt.
This equation can be further simplified by assuming that |0i is annihilated by the system operators aj , so that we
can write

phkf |S|kiip = �(ki � kf ) � �p

2⇡

Z 1

�1
dt

2

Z t2

�1
dt

1

h0|ape
iH(t1�t2)a†

p|0ieikf t2�ikit1 . (SM27)
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We can rewrite this expression in terms of system operators only as follows:

phkf |S|kiip = �(ki � kf ) � �p

2⇡

Z 1

�1
dt

2

Z t2

�1
dt

1

tr
n

ape
�iH(t2�t1)a†

p|0ih0|eiH(t2�t1)
o

eikf t2�ikit1 (SM28a)

= �(ki � kf ) � �p

2⇡

Z 1

�1
dt

2

Z t2

�1
dt

1

trS

n

ape
L(t2�t1)a†

p|0iSh0|
o

eikf t2�ikit1 , (SM28b)

where in the second equality we have performed the trace over the bath as trB{e�iH⌧ASeiH⌧} = eL⌧ [AS ], valid for
any system operator AS , by defining the Liouville superoperator

L(·) = �i[H⇤
S(·) � (·)H⇤†

S ] + �pap(·)a†
p + �sas(·)a†

s, (SM29)

and the non-Hermitian system Hamiltonian

H⇤
S = HS � i

�p

2
a†

pap � i
�s

2
a†

sas . (SM30)

|0iS is the ground state of HS . In order to get to the final operationally-friendly expression, let us denote by Ã a
system operator evolved with the non-Hermitian Hamiltonian H⇤

S , that is, Ã(t) = eiH⇤
StAe�iH⇤

St. The presence of
|0iS in (SM28b), which we defined as ground state of HS and assumed to be annihilated by the system operators aj ,
prevents any contribution from the jumps induced by the last two terms of (SM29), so that (SM28b) can be rewritten
as

phkf |S|kiip = �(ki � kf ) � �p

2⇡

Z 1

�1
dt

2

Z t2

�1
dt

1

h0|ãp(t2)e
ikf t2 ã†

p(t1)e
�ikit1 |0i (SM31a)

=

✓

1 + i�ph0|ap
1

H⇤
S � ki

a†
p|0i

◆

�(ki � kf ) . (SM31b)

Note how this expression allows evaluating scattering amplitudes by simply inverting the system operator H⇤
S � ki.

The scattering amplitude manipulated above is important as it determines the reflection coe�cient of single photons
sent to the system through the pump bath. In our case, there are another two important scattering amplitudes related
to the emission of signal photons. The first one corresponds to the probability amplitude of transforming an input
pump photon with momentum ki into two signal photons with momenta {q

1

, q
2

}, which following a similar approach
as with the scattering amplitude above can be ultimately written as

shq1, q2|S|kiip = i

r

�p

2⇡

�s

2⇡

Z

R3

dt
1

dt
2

dt
3

ei(q1t3+q2t2�kit1)h0|T
⇥

ãs(t3)ãs(t2)ã
†
p(t1)

⇤

|0i (SM32a)

= �i�s

r

�p

2⇡
h0|as



1

H⇤
S � q

1

+
1

H⇤
S � q

2

�

as
1

H⇤
S � ki

a†
p|0i �(q

1

+ q
2

� ki) . (SM32b)

Let us remark that the sum of two terms appearing inside the brackets appears because there are two di↵erent
time-orderings which contribute, ãs(t3)ãs(t2)ã†

p(t1) and ãs(t2)ãs(t3)ã†
p(t1).

Similarly, the probability amplitude of transforming two input pump photons with momenta {k
1

, k
2

} into four
signal photons with momenta {q

1

, q
2

, q
3

, q
4

} is given by a scattering amplitude which can written as

shq1, q2, q3, q4|S|k1, k2ip = � �p

2⇡

⇣ �s

2⇡

⌘

2

Z

R6

(⇧6

i=1

dti)e
i(q4t6+iq3t5+q2t4+q1t3�k2t2�k1t1) (SM33a)

⇥h0|T
⇥

ãs(t6)ãs(t5)ãs(t4)ãs(t3)ã
†
p(t2)ã

†
p(t1)

⇤

|0i,

which can be trivially written in an operationally-friendly form similar to (SM31b) and (SM32b), but which is too
lengthy to be written here since there many time-orderings which give nonzero contribution.

D. Evaluation of the two- and four-photon wave functions

The last two scattering amplitudes that we have given above, in Eqs. (SM32) and (SM33), are interesting because
their Fourier transform provides the two- and four-photon wave functions introduced in the main text. Let us here
provide closed expressions for these wave functions which can be evaluated directly from system operators.
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In the case of the two-photon wave function, it is simple but lengthy by using (SM32a) to obtain

 
2ph

(x
1

, x
2

)=
1

2⇡

Z

dq
1

Z

dq
2 shq1, q2|S|kiipei(q1x1+q2x2)=

r

�p

2⇡
�se

ikimax{x1,x2}h0|ase
�iH⇤

S |x1�x2|as
1

H⇤
S � ki

a†
p|0i. (SM34)

Note that, since the eigenvalues of H⇤
S always have negative imaginary part,  

2ph

(x
1

, x
2

) ! 0 when |x
1

� x
2

| ! 1,
showing that signal photons are emitted with a finite delay. From a practical point of view, this also means that this
wave function has no independent scattering contribution. Therefore, in order to normalize it, e.g., one can divide by
its maximal value in |x

1

� x
2

| (or equivalently ⌧) as we did in Fig. 2(b) of the main text.
The four-photon wave function

 
4ph

(x
1

, x
2

, x
3

, x
4

) =
1

(2⇡)2

Z

dq
1

Z

dq
2

Z

dq
3

Z

dq
4 shq1, q2, q3, q4|S|k1, k2ip ei(q1x1+q2x2+q3x3+q4x4) (SM35)

can also be easily found, but is much more elaborate (and has a much lengthier final expression) in the general case.
However, there are three relevant limits in which it is greatly simplified (we further assume x

1

> x
2

> x
3

> x
4

).
First the limits x

1

� x
2

! 1 or x
3

� x
4

! 1, in which it vanishes identically,  
4ph

! 0, showing that the distance
between the photons within the same pair is always finite, in agreement with what we found from the two-photon
wave function. Second, the limit x

2

� x
3

! 1, which gives information about how the photons within the pairs
behave when the system emits well-spaced pairs, and can be written as

 
4ph

(x
1

, x
2

, x
3

, x
4

) =  
2ph

(x
1

, x
2

)|ki=k1
 

2ph

(x
3

, x
4

)|ki=k2
+  

2ph

(x
1

, x
2

)|ki=k2
 

2ph

(x
3

, x
4

)|ki=k1
, (SM36)

which shows only independent scattering contributions where two incoming pump photons are scattered by the system
independently into signal pairs described by the two-photon wave function (SM34). Thus, in this case we can normalize
the general four-photon wave function to this independent scattering contribution, allowing us to compare directly

with the normalized g(2)s,2(⌧) shown in Fig. 2 (c) of the main text.
Finally, we consider the limit x

1

� x
2

! 0 and x
3

� x
4

! 0, which assumes the photons within the pairs to
overlap perfectly and thus gives information about the relative distance R = x

2

� x
3

between the the two-photon
wave packets (describing then the bunching or antibunching between the photon pairs). We get  

4ph

(x
1

, x
2

, x
3

, x
4

) =
 
4ph

(R; k
1

, k
2

) +  
4ph

(R; k
2

, k
1

), with

 
4ph

(R, k
1

, k
2

) = � �p

2⇡
�2sei(k1+k2)x1



h0|a2

se
�iH⇤

SRa2

s
1

k
1

+ k
2

� H⇤
S

a†
p

1

H⇤
S � k

1

a†
p|0i (SM37)

+h0|a2

s
e�iH⇤

SR � e�ik2R

H⇤
S � k

2

a†
p|0ih0|a2

s
1

H⇤
S � k

1

a†
p|0i

�

.

E. Application to our system Hamiltonian: condition for deterministic down-conversion and analysis of
timescales

Let us now particularize the previous general results to our cavity QED system Hamiltonian, Eq. (5) in the main
text, which we reproduce here for completeness

HS = gp a†
p|gihe| + ⌦s|m2

ihm
1

| + gs a†
s (|m

2

ihe| + |gihm
1

|) + H.c. , (SM38)

where the states {|gi, |m
1

i, |m
2

i, |ei} form a four-level system and aj are bosonic annihilation operators associated
to two cavity modes. It is important to note that the operator C = 2a†

pap + 2|eihe| + a†
sas + |m

1

ihm
1

| + |m
2

ihm
2

|
commutes with the Hamiltonian, and hence, H⇤

S does not connect subspaces with di↵erent eigenvalue c of C. In
particular, let us define the basis {|nip ⌦ |lis ⌦ |ri = |n, l, ri}r=g,m1,m2,e

n,l=0,1,2,... , where |nij is a Fock state for cavity
mode j. Then the representation of H⇤

S will have a box structure, each box corresponding to a subspace with
well defined eigenvalue, e.g., c = 0 spanned by {|0, 0, gi}, c = 1 spanned by {|0, 1, gi, |0, 0, m

1

i, |0, 0, m
2

i}, c = 2
spanned by {|1, 0, gi, |0, 2, gi, |0, 0, ei, |0, 1, m

1

i, |0, 1, m
2

i}, c = 3 spanned by {|1, 1, gi, |0, 3, gi, |1, 0, m
1

i, |1, 0, m
2

i,
|0, 1, ei, |0, 2, m

1

i, |0, 2, m
2

i}, or c = 4 spanned by {|2, 0, gi, |1, 2, gi, |0, 4, gi, |0, 2, ei, |1, 0, ei, |0, 3, m
1

i, |1, 1, m
1

i,
|1, 1, m

2

i, |0, 3, m
2

i}. In fact, these are all the subspaces that we need to consider in order to evaluate the main
scattering amplitudes and wave functions introduced above.

For example, consider the reflection amplitude of an incoming pump photon, Eq. (SM31b); it is clear that this can
be evaluated by considering the c = 2 subspace of H⇤

S � i�⇤|eihe|/2 (where we consider also spontaneous emission of
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|ei to |gi), which can be written as:

H⇤
S2

=

0

B

B

B

B

@

�i�p/2 0 gp 0 0
0 �i�s 0

p
2gs 0

gp 0 �i�⇤/2 0 gs

0
p

2gs 0 �i�s/2 ⌦⇤
s

0 0 gs ⌦s �i�s/2

1

C

C

C

C

A

. (SM39)

The reflection amplitude can be obtained then as

phkf |S|kiip =
⇥

1 + i�p(H
⇤
S2

� kiI5⇥5

)�1

11

⇤

�(ki � kf ), (SM40)

where I
5⇥5

is the 5 ⇥ 5 identity matrix and (H⇤
S2

� kiI5⇥5

)�1

11

refers to element 11 of the inverse of the matrix
H⇤

S2

�kiI5⇥5

, which can be easily found with the help of any symbolic program. Let us define the reflection coe�cient
Rp(ki) = |1 + i�p(H⇤

S2

� kiI5⇥5

)�1

11

|2. Even though its full expression is too lengthy to be shown here, we have
checked by exhaustive numerical inspection that within the bad-cavity limit it can be very well approximated by the
Lorentzian

Rp(ki) =

�

�

�

�

1 � 2�p

�p + �⇤ + �s(⌦s) � 2iki

�

�

�

�

2

, (SM41)

where we have introduced the Purcell rates �p = 4g2p/�p and �s(⌦s) = 4g2s�s/(�2s + 4⌦2

s), and we have assumed
�⇤ ⌧ �p,�s. We see that deterministic down-conversion can be obtained only at resonance ki = 0 and by demanding
phkf |S|ki = 0ip = 0 8kf , leading to an optimal control drive ⌦s given by

⌦2

2ph

=
�2s
4

�s(0) � (�p � �⇤)

�p � �⇤
, (SM42)

expression that coincides with the one given in the main text in limit of negligible spontaneous emission (�⇤ ! 0), Eq.
(7), generalizing it to the case where spontaneous emission is present. Note that even in the presence of spontaneous
emission it is still possible to obtain deterministic down-conversion, provided that certain conditions are satisfied. In
particular, defining the cooperativites Cj = 4g2j /�j�⇤, we see that assuming Cp > 1 then the condition Cs > Cp � 1
is required.

Proceeding in a similar way but making use of all the subspaces up to c = 4, we can find analytical expressions for
the two- and four-photon wave functions. These analytical expressions will allow us to see how the di↵erent timescales
of photon-pair emission depend on the system parameters. For example, the two-photon wave function (SM34), it is
easy to show that for resonant injection (ki = 0), and within the bad-cavity limit (gj ⌧ �j) together with a strong
control drive (⌦s � g2s/�s), we can write the corresponding probability as

| 
2ph

(x
1

, x
2

)|2/
�

�

�

�

2⌦s exp[� (�s � �s(⌦s)) r/2]��s exp(��s(⌦s)r/2) sin



⌦s

✓

1 +
�s(⌦s)

2�s

◆

r

�

�

�

�

�

2

, (SM43)

where r = |x
1

� x
2

|. It is easy to find by numerical inspection that the value of r that maximizes this expression
scales as ⌦�1

s for the regime of interest, i.e., ⌦s � �s(� �s(0)). This quantity is directly related to the timescale
separation between the photons within the pair, denoted by ⌧

in

in the main text, which we therefore find to scale as
⌧
in

/ ⌦�1

s . Hence, the photons within the pair can be made to overlap very well simply by working with large ⌦s.
On the other hand, under these circumstances the width of the two-photon wave function coincides with the intrinsic
width of the emitted photons, denoted by ⌧B in the main text, which for ⌦s � �s is simply given by the width of
the first term in the expression above, that is, ⌧B ⇡ ��1

s . Thus, within the bad-cavity limit the ⌦s � �s condition
ensures that the signal photon-pairs are emitted within the same temporal pulse (or spatial wave packet within the
scattering formalism) since ⌧

in

⌧ ⌧B .
In order to study the separation or bunching between the photon pairs, what we called ⌧A in the main text, we

analyze the four-photon wave function  
4ph

(x
1

, x
2

, x
3

, x
4

) under the assumption that we satisfy the condition ⌧
in

⌧ ⌧B
as explained above. Under such conditions, we can fix x

1

� x
2

⇡ 0 and x
3

� x
4

⇡ 0, and use then expression (SM37)
to study the four-photon wavefuntion at resonance (k

1

= k
2

= 0). To get the timescale ⌧A of antibunching between
the pairs, we then need to study the dependence of (SM37) with the relative coordinate R = x

2

� x
3

between the
wave packets. Even though it is easy to find an analytic expression for it, it is too lengthy and nothing is gained
from reproducing it here. However, in the bad-cavity limit it is possible to show that to second order in gj/�j we get
| 

4ph

(R, k
1

, k
2

)|2 / |1 � e�R/2⌧A |2, with

⌧�1

A = �s(⌦s) + �p , (SM44)
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FIG. SM1. Density plot of the second-order correlation of the pairs at zero delay g(2)2,s(0) as a function of ⌦s and �⇤, with the
rest of parameters fixed as in Fig. 2 of the main text.

in the absence of spontaneous emission. This explains why in Fig. 2 (c), the curves with ⌦s � �s or ⌦s ⌧ �s collapse
to a single antibunched curve with respective growth rates �p or �p + �s(0). When spontaneous emission is included
this timescale must be modified. In particular, when |�j � �⇤| � gj is satisfied, we get

⌧�1

A ⇡ 2 (�s � �⇤) g2s
4⌦2

s + (�⇤ � �s)
2

+
2g2p

�p � �⇤
+
�⇤

2
, (SM45)

which converges to the value provided in the main text when �⇤ ⌧ �j . The results are also confirmed by the numerical

simulation of Fig. SM1, where we show g(2)s,2(0) as a function of the control driving ⌦s and �⇤, as obtained directly from
numerical simulation of the master equation. As expected, by increasing �⇤ above �s the system shows a transition
from antibunched to bunched photon pairs, as ⌧A becomes comparable to ⌧B .

F. Entanglement properties of the photon-pair pulses

We proceed now to characterize the entanglement of the output signal photons. For this purpose, we analyze the
situation in which input pump photon comes as a wave packet with finite bandwidth in k-space, that is, | ini =
R

+1
�1 dkw(k)p†k|0i, with

R

+1
�1 dk|w(k)|2 = 1. From (SM32b), we see that the corresponding outgoing two-photon state

can be written as

| 
2ph

i = N
Z

R3

dk
p

dk
1

dk
2

w (kp)  ̃2ph

(k
p

, k
1

, k
2

) � (k
p

� k
1

� k
2

) s†k1
s†k2

|0i , (SM46)

where N is a normalization constant and we have defined the (unnormalized) two-photon wave function in momentum
space

 ̃
2ph

(k
p

, k
1

, k
2

) = h0| as
1

H⇤
S

� k
1

as
1

H⇤
S

� k
p

a†
p |0i + h0| as

1

H⇤
S

� k
2

as
1

H⇤
S

� k
p

a†
p |0i . (SM47)

This state is very similar to that obtained in standard free-space optical parametric down-conversion, such that in
order to analyze its entanglement we use the Schmidt number K as introduced in that context [9], which quantifies the
number of correlated modes that that enter in the superposition of a given two-photon quantum state. The Schmidt
number of a general bipartite system with subsystems A and B can be calculated as K = 1/tr{⇢2A}, where ⇢A is
the reduced density matrix of subsystem A. In our case, its evaluation is best performed by starting from the state
written in coordinate space, that is,

| 
2ph

i = N
Z

R2

dx
1

dx
2

F (x
1

, x
2

)s†(x
1

)s†(x
2

) |0i , (SM48)

where

F (x
1

, x
2

) =

Z

R2

dk
1

dk
2

2⇡
eik1x1+ik2x2w(k

1

+ k
2

) ̃
2ph

(k
1

+ k
2

, k
1

, k
2

). (SM49)
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(a)

FIG. SM2. Schmidt number K as a function of the normalized width R of the input wave packet, for di↵erent values of the
control drive ⌦s ranging from 0.01 (purple) to 5 (red). The rest of parameters are as in Fig. 2 of the main text. We have
marked in black the curve corresponding to the optimal control drive ⌦s = ⌦2ph, where our system behaves as a deterministic
down-converter.

The Schmidt number can then be written as [9]

K�1 =

Z

R2

dxdx0|M(x, x0)|2 , (SM50)

where M(x, x0) is defined as follows:

M (x, x0) =

R

dx
2

F (x, x
2

) F ⇤ (x0, x
2

)
R

dx
1

dx
2

|F (x
1

, x
2

)|2
(SM51)

This expression requires the evaluation of several integrals whose complexity depends on the form of the wave
packet w(k). Since in our case the two-photon wave function can be written as a combination of exponentials with an
argument linear in x

1

and x
2

, see (SM43), a Lorentzian wave packet w(k) =
p

�
in

/⇡(�
in

� ik)�1 with bandwidth �
in

allows us to perform all the required integrals analytically, although the final expression is too lengthy to be written
here. In Fig. SM2, for di↵erent values of the control drive ⌦s ranging from 0.001 to 5, we plot the Schmidt number
K as a function of R = �

in

/[�p +�s(⌦s)], that is the width of the input wave packet normalized to the characteristic
emission rate of the system (SM44). The rest of parameters are as in Fig. 2 of the main text. Several things can be
appreciated. First, note that for any ⌦s, the Schmidt number shows a linear divergence with R�1 as R goes to zero,
that is, in the limit of plane-wave input (note the log-log plot); this divergence is characteristic of down-conversion
processes, although the exact scaling depends on the shape of the input wave packet (for example, it is logarithmic for
a Gaussian one in the case of optical free-space down-conversion [9]). Second, note that the state shows no correlations
(K = 1) only for ⌦s ! 0 and one specific width; in this limit, the two-photon state can be written as b†2|0i, where b
is an annihilation operator that we will carefully characterize in future works. On the other hand, note that there are
several instances in which the Schmidt number goes to 2 (for example ⌦s ! 0 and R ! 1); in those cases, the state
can be written as b†

1

b†
2

|0i, where {bj}j=1,2 are annihilation operators that we will study in the future, showing that
the entanglement comes from the bosonic quantum statistics of the photonic modes, and not from the interaction.
Note that it has been recently proposed a way of extracting this entanglement coming only from indistinguisability as
a resource for quantum information purposes [10]. Finally, working at the optimal control drive ⌦s = ⌦

2ph

where the
system behaves as a determinisitc down-converter for plane waves (black curve), the Schmidt number is always well
above 2, showing that the outgoing photons are well entangled; for example, for a width matching the characteristic
one of the system, R = 1, the Schmidt number is K ⇡ 7 (see the circled point).
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FIG. SM3. E↵ective two-level system resulting from the adiabatic elimination of all the degrees of freedom except for the
ground and excited states. The e↵ective system has an e↵ective decay rate �e↵ = �p + �s(⌦s) + �⇤ and e↵ective coherent
driving ⌦e↵ = 2⌦pgp/�p.

SM2. EFFECTIVE CAVITY QED MODEL: EFFICIENCIES AND TIMESCALES.

This section aims at providing an intuitive understanding of our system by reducing it to a simpler one that allows
explaining the underlying physics in an easier manner. In the previous section, we have shown how the interesting
regime for the emission of photon pairs is the bad-cavity limit gj ⌧ �j , together with ⌦s � �s such that photons are
bunched. Under these conditions, the populations in the signal cavity and the intermediate levels {|m

1

i, |m
2

i} are
very small, while the population in the pump cavity is basically given by the driving laser, that is, hapi ⇡ 2⌦p/�p.
This allows for an adiabatic elimination of these degrees of freedom, such that the dynamics is captured by an e↵ective
two-level model defined by the states {|gi, |ei}, see Fig. SM3. In this reduced model, the coherent amplitude of the
pump cavity acts as a driving term ⌦

e↵

(|gihe| + |eihg|) with ⌦
e↵

= 2⌦pgp/�p. In addition, there is an e↵ective decay
rate given by �

e↵

= �p + �s(⌦s) + �⇤, which is easily found by applying perturbation theory in the c = 2 subspace
Hamiltonian (SM39). Note that this e↵ective rate coincides with the reloading rate (SM44) that we found in the
previous section.

The advantage of using this simplified model is two-fold: on the one hand it gives an intuitive and simplified picture
of the dynamics of the system; moreover, due to the simplicity of the e↵ective model, we can obtain analytical formulas
from which reading the scaling of the relevant magnitudes, e.g, for the population of the signal cavity, ns, which is
related to the e�ciency of two-photon emission. In order to obtain to obtain ns, we will first obtain the population of
the e↵ective two level system ne = tr{⇢|eihe|]. In the simplified model ne corresponds to the excited state population
of a driven-dissipative two-level system, which is given by

ne =
4⌦2

e↵

�2
e↵

+ 8⌦2

e↵

=
4g2p⌦

2

p

[�p + �s(⌦s) + �⇤]2�2p + 8⌦2

pg
2

p

, (SM52)

The number N of transitions from |ei to |gi per unit time going through the signal cavity is given by N = �s(⌦s)ne,
whereas the number of photons N

s

emitted per unit time from the signal cavity is given by N
s

= �
s

ns. On the other
hand, any time that one of the |ei ! |gi transitions takes place through the signal cavity, two photons are emitted,
and hence N

s

= 2N , leading to

ns = 2
�s(⌦s)

�
s

ne (SM53)

Maximizing this expression with respect to the control drive ⌦s, we obtain its optimal value. Interestingly, within
the bad-cavity limit, this value coincides with the one obtained by demanding deterministic down-conversion in the
scattering formalism, Eq. (SM42).

SM3. DETAILS ABOUT THE CIRCUIT QED IMPLEMENTATION

In this section we discuss in more depth show how our proposal could be implemented in circuit QED setups. For
completeness and guidance in the presentation, we provide a simple concrete architecture presented in Fig. 3(a) of the
main text, which we also reproduce here in Fig. SM5(a). However, it is important to note that any other architecture
containing the ingredients and couplings that we require will work as well.

The four-level structure is obtained from two identical qubits coupled through an xx interaction, two capacitively-
coupled transmons [11, 12] in Fig. SM5(a). For completeness, let us review here the physics behind a transmon
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�
EJ(�)

CJ

Cg Vg

CB

FIG. SM4. Simplified transmon circuit [11]. The basic circuit consists on a capacitor with capacitance CB connected to
two identical junctions in parallel (superconducting loop), which act as a single junction with capacitance CJ and nonlinear
inductance EJ(�) tunnable through the magnetic flux generated by an external circuit. A gate voltage Vg is applied via a
capacitor with capacitance Cg.

circuit, which is depicted in Fig. SM4. Using standard circuit-theory quantization, the Hamiltonian corresponding to
this circuit can be written as [11]

H
transmon

= 4EC(N � ng)
2 � EJ(�) cos('), (SM54)

where EC = e2/2(CB + CJ + Cg) is the so-called charging energy (e is the electron charge), EJ(�) = ĒJ | cos(�)| is
the so-called Josephson energy associated to the superconducting loop, which can be tuned through an external bias
magnetic flux � generated with another circuit, ĒJ is the bare Josephson energy associated to the junctions, and
ng = CgVg/2e is related to the gate voltage bias. The aperators N and ' are, respectively, the number of cooper
pairs transferred between between the superconductors which form the Josephson junctions and the phase di↵erence
between their macroscopic wave functions; they satisfy the commutation relation [', N ] = i/2⇡. In the “charge” basis
{|ni}n=0,1,2,... defined by N |ni = n|ni, the Hamiltonian is rewritten as

H
transmon

=
1
X

n=0

4EC(n � ng)
2|nihn|� EJ(�)

2
(|nihn + 1| + |n + 1ihn|). (SM55)

This Hamiltonian can be diagonalized analytically [11]. It turns out that close to the so-called “sweet spot” ng = 1/2,
the two lowest levels are well isolated from the rest, and made up only from the two lowest charge eigenstates, |0i and
|1i. Restricting the Hamiltonian to this subspace, and writing ng = 1

2

� �ng with |�ng| ⌧ 1/2, we get

H
transmon

= 4Ec�ng(|1ih1|� |0ih0|) � EJ(�)

2
(|0ih1| + |1ih0|), (SM56)

where we have removed an EC(|1ih1| + |0ih0|) contribution, which acts as the identity on the restricted subspace we
work on. At the sweet spot �ng = 0, the transmon eigenstates become fair superpositions of the charge eigenstates,
|"i = (|0i � |1i)/

p
2 and |#i = (|0i + |1i)/

p
2, with corresponding energies E",# = ±EJ(�)/2. Defining the Pauli

matrices with respect these two states, for example, �z = |"ih"|� |#ih#| and �x = |"ih#| + |"ih#|, the Hamiltonian is
then rewritten as

H
transmon

=
EJ(�)

2
�z + 4Ec�ng�x. (SM57)

Furthermore, let us rewrite the external flux as � = �̄���, with �̄ around ⇡/4 and ��⌧ �̄. We then Taylor-expand
the Josephson energy around �̄ to first order in ��, leading to

H
transmon

=
EJ(�̄)

2
�z + 4Ec�ng�x +

ĒJ sin(�̄)

2
���z. (SM58)

Hence, we finally get the Hamiltonian of a two-level system or qubit defined by the transmon eigenstates at the sweet
spot, coupled capacitively through �x and inductively through �z to two weak external control fields.

Consider now two identical transmon qubits capacitively coupled as in Fig. SM5(a). Given the discussion above,
and obviating the coupling to external weak fields, for such capacitive coupling the two-qubit Hamiltonian reads as

H
2qb

=
!t

2

⇣

�(1)

z + �(2)

z + �(1)

x �(2)

x

⌘

, (SM59)
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FIG. SM5. (a) Circuit QED implementation: two coupled transmon qubits provide the desired four-level structure (b),
while three LC resonators provide the single-mode cavities playing the role of signal, pump, and the classical driving for the
intermediate transition. The baths are implemented with open transmission lines.

where �(j)
k is the k’th Pauli matrix associated to qubit j, and we have defined the qubit gap !t = EJ(�̄), which have

used to normalize the qubit coupling . The spectrum of this Hamiltonian is plotted in Fig. SM5(b), and it consists of
the energies E

2,1 = ±!t corresponding to the symmetric and antisymmetric single-excited states |m
2,1i / |"#i±|#"i,

and the energies Ee,g = ±!t

p
1 + 2 corresponding to the combinations |e, gi / (�1 ⌥

p
1 + �2)|""i + |##i.

Remarkably, the spectrum contains four levels with exactly the energy spacings that we require in our cavity QED
proposal.

The next step consist on coupling the qubits to single-mode cavities in such a way that we reproduce the couplings
that appear in the Hamiltonian HS , Eq. (SM38), once everything is written in the two-qubit eigenbasis. There are
several ways of accomplishing this. One possible way is depicted in Fig. SM5(a). We consider three LC resonators with
characteristic frequencies !p (pump), !

L

(‘laser’), and !s (signal). The pump and laser resonators are inductively
coupled to qubits 2 and 1, respectively, while the signal resonator couples capacitively to the first qubit. The
corresponding interaction Hamiltonians are easily found from the transmon theory that we reviewed above, and that
lead to the Hamiltonian of Eq. (SM58): for capacitive coupling, one just needs to replace the static �ng by an
equivalent term coming from the voltage generated by the LC circuit, which is proportional to the x quadrature a+a†

of the circuit, where a is an annihilation operator; similarly, for an inductive coupling, one simply needs to replace the
static flux �� by the magnetic flux induced by the current circulating in the LC circuit, which is again proportional to
the corresponding x quadrature. Hence, capacitive couplings lead to an xx cavity-qubit interaction, while inductive
couplings lead to an xz interaction. Therefore, the Hamiltonians coupling cavities and qubits in our system can be
written as

H
1L

= g
1L

(a
L

+ a†
L

)�(1)

z ⇡ g
1L

(↵e�i!Lt + ↵⇤ei!L)�(1)

z , (SM60a)

H
2p = g

2p(ap + a†
p)�

(2)

z , (SM60b)

H
1s = g

1s(as + a†
s)�

(1)

x , (SM60c)

where aj is the annihilation operator of the corresponding cavity, and in the first Hamiltonian we have assumed that
the laser cavity is strongly driven, so that a

L

can be replaced by its expectation value ha
L

i = ↵e�i!Lt.

We are going to show that, under certain conditions, these Hamiltonian terms provide the ones that we are looking
for when written in the eigenbasis {|gi, |m

1

i, |m
2

i, |ei} of the two-qubit system. To this aim, let us first remark that
in such basis the single-qubit operators are written as

�(1)

z = |eihe|� |gihg|� |gihe| + |m
1

ihm
2

| + H.c., (SM61a)

�(2)

z = |eihe|� |gihg|� |gihe|� |m
1

ihm
2

| + H.c., (SM61b)
p

2�(1)

x = |m
2

ihe|� |m
1

ihe| + |gihm
2

| + |gihm
1

| + H.c., (SM61c)

where, for the sake of simplifying the expressions, we have assumed ⌧ 2, though this is not really demanded for our
system to work (the only requirement being that  is not much bigger than 1 as this would make |m

1,2i and |g, ei nearly
degenerate). Hence, in an interaction picture defined with respect to the free Hamiltonian H

2qb

+ !sa†
sas + !pa†

pap,
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...
FIG. SM6. Level structure of the atom or artificial atoms system that allows us to generalize our results to N -photon sources.
As before, the signal field is represented in blue, while the pump field is represented in red.

the coupling Hamiltonians (SM60) can be written as

H
1L

(t) = g
1L

↵⇤ei!Lt
⇣

|eihe|� |gihg|� |gihe|e�2i!t

p
1+2t + |m

1

ihm
2

|e�2i!tt + H.c.
⌘

+ H.c., (SM62a)

H
2p(t) = g

2pa
†
pe

i!pt
⇣

|eihe|� |gihg|� |gihe|e�2i!t

p
1+2t � |m

1

ihm
2

|e�2i!tt + H.c.
⌘

+ H.c., (SM62b)

H
1s(t) =

g
1sp
2
a†

se
i!st

h

(|m
2

ihe| + |gihm
1

|)ei!t(�
p
1+2

)t + (|gihm
2

|� |m
1

ihe|)e�i!t(+
p
1+2

)t+ H.c.
i

+ H.c.. (SM62c)

We therefore see that choosing the frequencies of the LC resonators as !
L

= 2!t, !p = 2!t

p
1 + 2, !s =

!t(
p

1 + 2 � ), we make resonant the couplings {↵|m
2

ihm
1

|, a†
p|gihe|, a†

s(|m2

ihe| + |gihm
1

|)} present in the tar-
get Hamiltonian (SM38), while the rest of the terms are suppressed within a rotating-wave approximation as long
as {g

1L

↵, g
2p, g1s/

p
2} ⌧ 2!t. Under such conditions, we recover the desired Hamiltonian with the identifications

⌦s = g
1L

↵, gp = �g
2p, and gs = g

1s/
p

2.

SM4. OUTLOOK: EXTENSION TO N-PHOTON STATES

In the main text, we focussed on how to achieve deterministic generation of photon pairs using an atomic 4-
level structure. In these Section, we show how our ideas can be generalized to N(>2)-photon sources, by using
more complicated level structures. We include here an initial analysis of the approximate wave functions and the
deterministic conversion condition, leaving a more detailed analysis for a follow-up paper.

One way of generalizing our results to design N -photon sources is to use a level structure with 2N levels as sketched
in Fig. SM6. Assuming that we move to a rotating frame where the hamiltonian in time-independent and that we
consider all the processes to be resonant, the Hamiltonian describing the system reads:

HS = gp |ei hg| ap + gs |ei hm1

| as + ⌦
12

|m
1

i hm
2

| + gs |m2

i hm
3

| as + ⌦
34

|m
3

i hm
4

| + ... +

gs |m2N�4

i hm
2N�3

| as + ⌦
2N�3,2N�2

|m
2N�3

i hm
2N�2

| + gs |m2N�2

i hg| as + H.c., (SM63)

where ⌦n,n+1

(n = 1, 3, ...2N � 3) are the Rabi frequencies of the classical lasers connecting the |ei ! |gi cascade.
This Hamiltonian has to complemented with the corresponding Lindblad term associated to pump and signal cavity
damping, at rates �s,p.

First, as we did for the N = 2 case, we calculate what is the reflection coe�cient after the arrival of a single
pump photon. Interestingly, assuming to work within the bad cavity limit, the reflection coe�cient that governs the
deterministic conversion condition is given, to lowest order in gs,p, by

p hkf |S |kiip ⇡
✓

2�p

�p + �s(⌦12

) � 2iki
� 1

◆

� (kf � ki) , (SM64)

where �p and �s(⌦12

) are define as in the N = 2 case. As before, by tuning ⌦
12

such that �s(⌦12

) = �p we obtain
the deterministic conversion condition at resonance ki.

It is also instructive to obtain the N and 2N photon wave function,  
Nph

(x
1

, ..., xN ) = h0|s(x
1

)...s(xN )S|k
0

ip
and  

2Nph

(x
1

, ..., xN , xN+1

, ..., x
2N ) = h0|s(x

1

)...s(x
2N )S|k

0

, k
0

ip, under the deterministic conversion condition. As
before, their general expressions are very lengthy; however, using the intuition that we gained from the N = 2
situation, simplified expressions are expected by working in the regime where ⌦n,n+1

and |⌦n,n+1

� ⌦n+2,n+3

| are
much larger than �s. Indeed, under these conditions the N -photon wave function takes the simple approximate form

 
Nph

(x
1

, x
2

, ..., xN ) / e��s(xN�1�xN )/2e��s(xN�2�xN�1)...e�(N�2)�s(x2�x3)/2e�(N�1)�s(x1�x2)/2, (SM65)
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which is bunched and entangled as in the N = 2 case. Similarly, the 2N -photon wave function can be approximated
to the second order in gp,s as

 
2Nph

(x
1

, ..., x
1

, x
1

� ⌧, ..., x
1

� ⌧) / 1 � e�[�s(⌦12)+�p]⌧/2 , (SM66)

which is therefore antibunched with the same timescale as in the N = 2 case.
These results show that our deterministic down conversion mechanism can indeed be extended for the generation

of N -photon states.
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