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These document contains the exercise sheets of the di↵erent chapters that we have gone through

in the Open Quantum Optical Systems course at the Erlangen-Nürnberg Friedrich-Alexander Uni-

versität (goo.gl/o96XWP). The notation and tone matches exactly that of the lecture notes for the

course (goo.gl/JAugr3). The sheet for each chapter is divided in two parts. First, I provide the

key questions that I think students should know how to answer, which will form the backbone of

the exam. The goal of these questions is to help students know what they should study. Second,

I provide an exercise that can be worked out with the tools developed in the chapter, and which

students can get extra points from.

II. QUANTIZATION OF THE ELECTROMAGNETIC FIELD
AS A COLLECTION OF HARMONIC OSCILLATORS

A. Key questions of the chapter

1. Starting from the Maxwell equations, derive the wave equation for the vector potential. Explain the quasi-
1D approximation and, assuming perfectly conducting boundary conditions, write the corresponding vector
potential in terms of appropriate mode functions. Interpret physically the conditions that such boundaries
impose on the expansion coe�cients and the allowed wave vectors.

2. Using the wave equation, prove that the expansion coe�cients satisfy the dynamical equations of independent
harmonic oscillators. Show that choosing a proper normalization factor in the vector potential expansion, the
electromagnetic energy turns into the Hamiltonian for the independent oscillators. Quantize the electromagnetic
field.

3. Take the Hamiltonian of a harmonic oscillator in terms of its quadratures, Ĥo = ~!(X̂2 + P̂
2) with [X̂, P̂ ] =

2i. Use the expansion of the quadratures in terms of annihilation and creation operators to diagonalize the
Hamiltonian, proving that the oscillator’s Hilbert space is infinite dimensional. Discuss the two main physical
consequences that quantum physics imposes on the oscillator: energy quantization and absence of well-defined
phase-space trajectories.

4. Introduce the Wigner function as the quasi-probability density function in phase space that has the right
marginals for quadrature measurements. Explain why it cannot be interpreted as a true probability density
function and argue that the statistics of quantum mechanics cannot be simulated with standard noise, and
hence quantum physics goes beyond classical physics.

5. Introduce coherent states as eigenstates of the annihilation operator and prove that they can be written as a
displaced vacuum. Find their representation in the Fock-state basis, and discuss the photon-number distribution
they lead to.

6. Introduce Gaussian states and find a condition based on coherent states that any state ⇢̂ must satisfy to be
Gaussian. Prove that coherent states are Gaussian and find their corresponding Wigner function. Interpret it
from the point of view of high-precision measurements and introduce squeezed states.

7. Introduce the concept of maximally-mixed state in finite dimension. Explain how the concept is extended to
infinite dimension and introduce thermal states of a general Hamiltonian. Apply the definitions to the harmonic
oscillator Hamiltonian Ĥ = ~!â

†
â, writing the corresponding thermal state in the Fock basis. Prove that the

state is Gaussian and compare its Wigner function with that of vacuum.

⇤ derekkorg@gmail.com; www.carlosnb.com
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B. Graded exercise 1: Cat states

Consider the state |↵cati = N↵(|↵i + | � ↵i), where | ± ↵i are coherent states, we take ↵ 2 R, and N is a suitable
normalization constant. This state is known as a cat state because it is a quantum superposition of two coherent
states, which are the most classical quantum states in the sense discussed in the lectures.

1. Find the factor N↵ that normalizes the state.
Hint: just operate on h↵cat|↵cati = 1

2. Find the Fock-state representation of the state and discuss the corresponding photon-number probability distri-
bution.
Hint: just write the Fock representations of each coherent state and simplify.

3. Find the quantum characteristic function hD̂(x, p)i and show that it is not Gaussian.
Hint: Use the complex representation of the displacement operator defining � = (x + ip)/2, together with the

normal form D̂(�) = e
�|�|2/2

e
�â

†
e
��

⇤
â. Use then the fact that coherent states are eigenstates of the annihilation

and creation operators, and you should be able to write the characteristic function as the sum of four exponentials
quadratic in x and p.

4. Find the Wigner function. Set x = 0 and discuss the shape and negativities that you can observe along the p

axis.
Hint: Just Fourier-transform the characteristic function with the help of the Gaussian integral

R
R dze

Bz�z
2
/2A =p

2⇡Ae
AB

2
/2 valid for any A > 0 and B 2 C.

5. Find the probability density functions for measurements of the X̂ and P̂ quadratures. Compare them with the
ones corresponding to the mixed state ⇢̂↵ = N

2
↵

⇥
|↵ih↵| + | � ↵ih�↵| + 2 exp(�2↵2)|0ih0|

⇤
.

Hint: Find the marginals of the Wigner function with the help of the Gaussian integral of the previous question.
Note that the definition of the Wigner function is linear in the density operator, and hence, the Wigner function
of the mixed state ⇢̂↵ is just a mixture of the Wigner function of the states that form ⇢̂↵.
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III. QUANTUM THEORY OF ATOMS AND THE TWO-LEVEL APPROXIMATION

A. Key questions of the chapter

1. Explain the main di↵erence between the energy spectrum of the harmonic oscillator and the energy spectrum
of an atomic system (you can use the Hydrogen atom as an example).

2. Consider hydrogen-like atoms, that is, atoms with all electrons in (inactive) closed shells, except for a single
valence electron. Define the parity operator as the unitary transformation which inverts the sign of the relative
atomic coordinate. Show that it also inverts the sign of the relative momentum. Assuming that the atomic
Hamiltonian is symmetric under parity transformations, show that the energy eigenstates with the same parity
cannot be connected by the relative-coordinate operator.

3. Justify the two-level approximation on an atom when working with monochromatic light. Introduce the Pauli
pseudo-spin operators associated to the two atomic states, and write the atomic Hamiltonian in terms of �̂z

within this approximation.

4. Show that a general atomic state can be written as ⇢̂ = (Î + bT �̂)/2, where bj = h�̂ji and b2  1. Argue that
b = 0 corresponds to the maximally-mixed state, while states are pure if and only if b2 = 1. Introduce the
Bloch space, and identify the points where the eigenstates of the Pauli operators are located.

5. Write down a general time-dependent Hamiltonian, and write down the Bloch equations (both in ordinary and
complex form).

6. Consider an atom evolving freely. Use the Bloch equations to introduce the concept of (pseudo-)spin precession,
and its visualization in Bloch space.

7. Consider now the semi-classical Rabi Hamiltonian. Using the description of light-matter interaction within
the dipole approximation introduced in the next chapter, argue that this corresponds to the interaction of
the two-level atomic system with a classical monochromatic field. Write down the complex Bloch equations
and introduce the rotating-wave approximation, justifying it by averaging the equations over an optical cycle.
Particularize the solution provided in the notes to the case in which the atom starts in the ground state. Discuss
the frequency and amplitude of the oscillations performed by the excited-state population. What happens when
the detuning between the atomic transition and the light beam is very large? How does this justify the two-level
approximation?
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B. Graded exercise 2: Beyond the rotating-wave approximation.

Consider the semi-classical Rabi Hamiltonian Ĥ(t) = ~"�̂z/2 + ~⌦ cos(!t)�̂x, acting on a two-level atom initially
in the ground state.

1. Writing the state as | (t)i = a(t)ei"t/2|gi + b(t)e�i"t/2|ei with a(0) = 1 and b(0) = 0, use the Schrödinger
equation to show that the amplitudes obey the evolution equations

ȧ = �i⌦e
�i"t cos(!t)b, (1a)

ḃ = �i⌦e
i"t cos(!t)a. (1b)

2. Within the rotating-wave approximation, neglect fast-oscillating terms in this equations (or use the rotating-wave
Hamiltonian Ĥ(t) = ~"�̂z/2 + ~⌦

�
e
i!t
�̂ + e

�i!t
�̂
†�

/2 to find the equations of motion), and show that they lead
to the solutions

b(t) = �i
⌦p

�2 + ⌦2
e
�i�t/2 sin

 p
�2 + ⌦2

2
t

!
, (2a)

a(t) = cos

 p
�2 + ⌦2

2
t

!
� i

�p
�2 + ⌦2

sin

 p
�2 + ⌦2

2
t

!
, (2b)

with � = ! � ".
Hint: Starting from the equations for a and b, you can find a second order di↵erential equation for b with
constant coe�cients, which you can easily solve by, e.g., an exponential ansatz.

3. Next you are going to apply a perturbative approach on the original equations (1). Under the assumption that
⌦ is small, expand the amplitudes as the power series

a(t) =
1X

n=0

⌦n
a
(n)(t), and b(t) =

1X

n=0

⌦n
b
(n)(t). (3)

Plug this expansion into the evolution equations and match the terms of the same power in ⌦ to show that they
lead to the recurrent equations

ȧ
(n) = �i cos(!t)e�i"t

b
(n�1)(t), [n = 1, 2, 3, ...] (4a)

ḃ
(n) = �i cos(!t)ei"t

a
(n�1)(t), (4b)

starting at a
(0)(t) = 1 and b

(0)(t) = 0.

4. Working on resonance, ! = ", prove that to second order in ⌦ we get

b(t) = � i

2
⌦t +

⌦

4"

�
1 � e

2i"t
�
. (5a)

a(t) = 1 � ⌦2
t
2

8
+

✓
⌦

4"

◆2 ⇥
3 � (1 + 2i"t) e

�2i"t � 2 cos(2"t)
⇤
. (5b)

5. Compare this solution with the rotating-wave solutions (2) for times t ⌧ ⌦�1. Use this comparison to argue
that e↵ects beyond the rotating-wave approximation are suppressed by powers of ⌦/".
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IV. LIGHT-MATTER INTERACTION

A. Key questions of the chapter

1. Introduce the description of light-matter interaction based on the dipole approximation for matter.

2. Apply this description to the interaction between the electromagnetic field of a cavity and a single atom to
derive the Rabi and Jaynes-Cummings Hamiltonians, explaining the conditions under which these are expected
to hold.

3. Introduce the dressed states as the eigenstates of the Jaynes-Cummings Hamiltonian. Discuss the corresponding
energy spectrum, and compare it with that of the non-interacting case. Introduce also the concept of avoided
crossing from the analysis of the first two energy transitions.

4. Find the evolution of an initial state consisting of an atom in the ground state and the field in an arbitrary
pure state. Evaluate the excited-state population, and introduce the concept of quantum Rabi oscillations by
assuming that the field starts in a Fock state.

5. Discuss the evolution of the excited-state population for a field starting in a coherent state. Make a qualitative
plot showing the relevant physical phenomena: semiclassical Rabi oscillations, collapses, and revivals. Use
approximations and reasonable arguments to find the time scale for each of these phenomena.

6. Introduce the dipole model of a dielectric. Use it to show how Maxwell equations inside of them are modified
with respect to the ones in vacuum.

7. Discuss the e↵ect that the linear term of the polarization density has on the field entering the dielectric:
wavelength and amplitude reduction.

8. Use the macroscopic Maxwell equations to derive a wave equation for the electric field where the nonlinear terms
of the polarization density act as a forcing or source term. Discuss then the frequency conversion phenomena
linked to second order nonlinearity: second-harmonic generation, sum-frequency generation, di↵erence-frequency
generation, and down-conversion.

9. Write down the general interaction Hamiltonian of the electromagnetic field with the nonlinear dielectric. As-
sume that only two cavity modes with frequencies !0 and !2 ⇡ 2!0 and orthogonal polarization are relevant.
Use energy and momentum conservation arguments to write down the down-conversion Hamiltonian.

10. Perform a classical (parametric) approximation for the pump mode, and find the Hamiltonian of the down-
converted mode within this approximation. Explain qualitatively the types of behavior that this Hamiltonian
leads to, particularly the di↵erence between the stable and unstable regimes.
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B. Graded exercise 3: Third-order (Kerr) nonlinearity

Consider an optical cavity containing a dielectric medium without inversion symmetry. P(2)(r, t) vanishes identically
fur such media, for which P(3)(r, t) becomes then the dominant nonlinear term of the polarization density.

1. Neglecting all cavity modes but one with frequency ! polarized along the x direction, show that

P̂
(3)
j

(r) = �i
�
(3)
jxxx

"
1/2
0

✓
~!

nxLS

◆3/2

sin3(nxkz)(â � â
†)3. (6)

Hint: Just take the form of the single-mode field that we introduced in the lectures inside a dielectric medium,
and apply the definition of the third-order nonlinear polarization density.

2. Assume that the dielectric medium has length l and is placed right at the surface of the left mirror, hence covering
the space z 2 [0, l] inside the cavity (as usual, we assume that the transverse dimensions of the dielectric medium
cover the whole cavity). Use the light-matter interaction Hamiltonian within the dipole approximation, together
with the rotating-wave approximation and the physical condition nxkl � 1, to show that the dynamics of the
optical mode is ruled by the Hamiltonian

Ĥ = ~ (! + g) n̂ + ~gn̂
2
, (7)

with

g =
9�(3)

xxxxl~!2

4"0Sn2
x
L2

. (8)

Hint: Just apply the definition of the light-matter Hamiltonian within the dipole approximation. Write the
result of the spatial integral along z in terms of sinc functions that fall to zero when their argument is much
larger than one. Then, after keeping the (free-)energy-conserving terms within the rotating-wave approximation,
you’ll need to use the canonical commutation relations to write the Hamiltonian in terms of the number operator.

3. What are the eigenstates and eigenenergies of this Hamiltonian? Make a graphic representation of the energy
levels for a given |g| ⌧ !, considering both the positive and negative cases, comparing it with the noninteracting
situation g = 0.

4. Move to a picture rotating at the frequency !+g, so that the Hamiltonian in the new picture reads as H̃ = ~gn̂
2.

Consider a coherent state |↵i as the initial state | (0)i. Find the state |̂ (t)i in the rotating picture at subsequent
times. Show that the photon-number distribution doesn’t change in time. Show that the state is periodic, with
period T = 2⇡/g (take g > 0 from now on). Finally, show that at times tk = ⇡(2k + 1)/2g with k = 0, 2, 4, ...,
the state is equivalent to the cat superposition

^| (tk)i =
e
�i⇡/4

p
2

(|↵i + i| � ↵i) . (9)

Hint: Work in the Fock state basis.
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V. QUANTUM OPTICS IN OPEN SYSTEMS

A. Key questions of the chapter

1. Introduce a model for the field outside a cavity with a partially-transmitting mirror (open cavity). For this,
consider an external cavity that shares the partially-transmitting mirror with the main cavity. Write down
the vector potential associated to the external cavity, and show that the infinite-length limit leads to a field
composed of a continuous set of harmonic oscillators.

2. Focusing on a single mode of the main cavity, introduce the Hamiltonian describing its interaction with the ex-
ternal field. For this, argue that the beam-splitter Hamiltonian models the interaction term (photon tunneling),
with a coupling parameter that can be taken independent of the frequency provided the mirror’s reflectivity is
large and slowly-varying with the frequency. Explain as well why we can introduce fictitious negative-frequency
external modes that simplify enormously the math.

3. Working in the Heisenberg picture, introduce the equations modeling the dynamics of the cavity mode (quantum
Langevin equation), showing that a damping term appears, together with an input operator that contains
information about the state of the external field. Show that the presence of a monochromatic coherent component
in the external field (laser injection) can be accounted for with a time-dependent Hamiltonian linear in the
intracavity annihilation and creation operators. Evaluate also the type of statistics (expectation values and two-
time correlators) that the input operator has when the external field is in a thermal state (argue that you can
assume the same thermal state for all external modes approximately, that is, a frequency-independent thermal
excitation number).

4. Working in the Schrödinger picture, derive an approximate evolution equation for the cavity mode. Start with
the von Neumann equation for the density operator of the whole system (including the laser injection in the
cavity Hamiltonian), and make two picture changes: first to a picture where the Hamiltonian becomes time-
independent, and then to a picture where the free terms are removed, leaving only the (transformed) interaction
term. Introduce the Born and non-backaction approximations, and show that they lead to an evolution equation
that describes the dynamics of the cavity mode up to second order in the interaction. Trace out the external
field using a thermal state as its initial state, finding the final Lindblad form for the master equation that rules
the dynamics of the cavity mode.

5. Argue that the state of an empty cavity mode is Gaussian at all times (provided it starts in a Gaussian state).
Find the first and second moments both through the quantum Langevin equations and through the master
equation. Show that they reach an asymptotic state (independent of the initial condition), and interpret the
corresponding state as a displaced thermal state.

6. Argue that a similar kind of procedure allows finding a master equation for an atom in free space. Write down
such equation, derive the corresponding Bloch equations of the atom, and use them to introduce the concept of
spontaneous emission. Show that starting in the excited state, the atomic density operator evolves through all
the ground-excited mixed states until it reaches the ground state.

7. Starting from the Hamiltonian describing the interaction between the atom and the field in free space, argue (at
least qualitatively) that the mixed states of the atom appear as a consequence of entanglement with the field.

8. Explain (also qualitatively) the e↵ect that a frequency-dependent coupling between the atom and the field has
on the master equation (Lamb shift).
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B. Graded exercise 4: Atomic dephasing

While spontaneous emission is probably the most interesting incoherent process occurring in atoms from a theoretical
point of view, there is another incoherent process which is even more important in practical terms, the so-called
dephasing. Many di↵erent physical processes contribute to it, and in this exercise we will study it with a generic
model: the atomic transition is a↵ected by small random fluctuations (coming, for example, from stray random or
thermal magnetic fields in the laboratory).

1. Consider the Hamiltonian Ĥ = ~["+ '(t)]�̂z/2, where '(t) is a random variable with zero mean, that accounts
for random fluctuations in the atomic transition frequency. Use the complex Bloch equations to show that the
state, averaged over stochastic realizations, can be written as

⇢̂(t) =
1

2

h
Î + bz(0)�̂z + 2e

i"t��⇤(t)
b
⇤(0)�̂ + 2e

�i"t��(t)
b(0)�̂†

i
, (10)

where we have defined

e
��(t) = e

�i
R t
0 dt0'(t0)

, (11)

with �(t) 2 C in general and where the overbar denotes stochastic average.

2. Define �(t) =
R

t

0 dt
0
'(t0). Provide arguments in favor of the identity cos �(t)

2
+ sin �(t)

2
 1, and use it to

prove that Re{�(t)} � 0. Assuming e
�Re{�(t)} decays to zero monotonically as a function of time, explain the

trajectory followed in Bloch space by the initial superposition state | (0)i =
p

p|gi +
p

1 � p|ei with p 2 [0, 1].
Show that the final state is the incoherent mixture

lim
t!1

⇢̂(t) = p|gihg| + (1 � p)|eihe|, (12)

so that the populations are left untouched, but the coherence has been destroyed.
Hint: Just evaluate the Bloch vector components at t = 0 using | (0)i, plug them in (10), and infer the Bloch
vector components at any other time from it. In order to visualize the trajectory, it is useful to first forget about
the z-precession at frequency "; the remaining trajectory should just be a straight line (which becomes a spiral
after including the precession).

3. Show that the state (10) obeys the master equation

d⇢̂

dt
=


� i

2

⇣
"+ Im

n
�̇(t)

o⌘
�̂z, ⇢̂

�
+

Re
n

�̇(t)
o

2
(�̂z ⇢̂�̂z � ⇢̂) , (13)

where the overdot denotes time derivative.
Hint: Just evaluate the left and right hand sides independently, and show that they match.

4. Consider the case in which '(t) derives from a Gaussian stochastic process. Defining �(t) =
R

t

0 dt
0
'(t0), use the

Gaussian-moments formula

�n(t) =

(
0 n 2 odd

(n � 1)!!�2(t)
n/2

n 2 even
, (14)

to show that

e�i�(t) = e
��2(t)/2

. (15)

Hint: Simply expand the exponential on the left hand side in Taylor series, use the formula, and simplify the
expression to turn the elements of the sum into the ones required to obtain the right-hand-side’s exponential.

5. Consider the white-noise limit, that is, '(t)'(t0) = �'�(t � t
0), where �' is some constant rate. Show that

�(t) = �'t/2 in this case, leading to a master equation

d⇢̂

dt
=


� i

2
"�̂z, ⇢̂

�
+
�'

4
(�̂z ⇢̂�̂z � ⇢̂) , (16)

which is the usual master equation written in quantum optical problems to account for dephasing.
Hint: Just use the definition of �(t) and �(t), together with (15).
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VI. ANALYZING THE EMISSION OF OPEN SYSTEMS

A. Key questions of the chapter

1. Working in the Heisenberg picture, and using reasonable approximations such as setting slowly-varying functions
of the frequency to their value at the cavity resonance or ignoring retardation e↵ects, write down the field coming
out of an open cavity as a function of the intracavity and input annihilation operators (input-output relations).

2. Using the model of the previous chapter for the interaction between the cavity mode and the external modes,
derive a formal solution for the external annihilation operators in terms of their final conditions at some future
time and the cavity annihilation operator. Use this solution to find an alternative form of the output field’s
annihilation operator as a Fourier transformed of the external field’s initial condition. Use it to show that
the output annihilation and creation operators satisfy canonical commutation relations in time. Prove that
the structure of the forward and backward quantum Langevin equations make the open-cavity model satisfy
causality.

3. Introduce the qualitative model of a photodetector, explaining how a single photon is capable of creating a
measurable electronic pulse. Explain that the combination of all the pulses generated by di↵erent photons
create a macroscopic stochastic current, and write down the relation between its moments and the quantum
moments of the number operator associated to the output field coming from a source. Inspired by this relation,
define the correlation functions of the output field, and use the input-output relations to show that, at zero
temperature, they are directly proportional to correlation functions of the source.

4. Introduce, without proving but explaining them carefully, the quantum regression theorem and the quantum
regression formula for two-time correlators. Using the example of a radiating atom, provide a physical in-
terpretation for the two-time correlation function associated to direct photodetection (coincidence correlation
function) as the probability of getting two consecutive photodetection events separated by a given time interval.

5. Taking the master equation of the driven cavity as the starting point (in a picture rotating at the laser frequency),
evaluate the (normalized) coincidence correlation function for two situations: zero temperature (n̄ = 0 but E 6= 0)
and zero drive (n̄ 6= 0 but E = 0). You may use the properties of coherent states for the first one, and the
quantum regression formula for the second. Interpret the results as photons arriving to the detector at random
in the first case, and photons arriving in bunches in the second case.

6. Consider an atom subject to resonant driving and spontaneous emission (at zero temperature). Using the master
equation in a picture rotating at the laser frequency, write down the Bloch equations. Turn them into a second-
order di↵erential equation for the excited-state population and find its value in the asymptotic, stationary limit.
Show that it is never possible to obtain population inversion (that is, more population in the excited state than in
the ground state), reaching a limit of 1/2 for infinite driving. Find a expression of the (normalized) coincidence
correlation function as a function of the excited-state population and solve its equation of motion to find the
full time-dependence of the correlation function. Use the result to introduce the concept of antibunching.

7. Introduce homodyne detection for the field coming out of a source, and show that the first and second moments
of the corresponding photocurrent are proportional to normally-ordered moments of the quadratures. Introduce
also the quadrature noise spectrum and the definition of squeezing for the fields coming out of an open source.

8. Write down the quantum Langevin equations of an open cavity containing a second-order nonlinear medium
that provides down-conversion for the cavity mode (use the parametric approximation). Assuming zero detuning
for the down-conversion process and working below threshold (damping rate larger than the down-conversion
rate), write down decoupled equations for two orthogonal quadratures and solve them. Argue that the state
is Gaussian, and study the asymptotic state by evaluating the mean vector and covariance matrix. How much
squeezing can you get inside the cavity? Is the state a minimum-uncertainty one? How about the state of the
output field? Evaluate the noise spectrum of the independent quadratures and answer this question.
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B. Graded exercise 5: Coincidence correlation function of the below-threshold OPO

We have studied in class the squeezing properties of the light coming out of an optical parametric oscillator (OPO)
below threshold and at resonance. Here we will now evaluate the coincidence correlation function, which is essential
to understand the photon statistics of the field emitted by any system.

1. Can you guess, based on physical arguments, whether the the photons emitted by the OPO will arrive at the
photodetector bunched, antibunched, or at random?

2. Let us remind the solution for the slowly-varying position and momentum quadratures,

lim
t!1

X̃
'(t) =

p
2� lim

t!1

Z
t

0
d⌧

0
e
��'⌧

0
X̃

'

in(t � ⌧
0),

h
' = 0,

⇡

2

i
, (17)

with �0 = � � g, �⇡/2 = � + g, g 2 [0, �[, and where the input operators satisfy the statistical properties

hX̃�

in(t)i = 0 and hX̃�

in(t)X̃�
0

in (t0)i = e
i(�0��)

�(t � t
0). Use it to show that

lim
t!1

hX̃'(t)X̃'
0
(t + ⌧)i =

2�

�' + �'0
e
i('0�')

⇢
e
��'0⌧ for ⌧ > 0
e
�'⌧ for ⌧ < 0

. (18)

Hint: In class we evaluated limt!1hX̃'(t)X̃'(t + ⌧)i. Just follow similar steps.

3. In class we saw the formula

h�L̂1�L̂2�L̂3�L̂4i = h�L̂1�L̂2ih�L̂3�L̂4i + h�L̂1�L̂3ih�L̂2�L̂4i + h�L̂1�L̂4ih�L̂2�L̂3i, (19)

valid for Gaussian states when the operators L̂j are all linear in position and momentum, and �L̂j = L̂j � hL̂ji.
Argue that for the OPO below threshold (and any other problem described by linear quantum Langevin equations),
this formula applies even when considering Heisenberg-picture operators at di↵erent times, that is, for the set
{L̂1(t1), L̂2(t2), L̂3(t3), L̂4(t4)}.

4. Use the previous formula to show that the coincidence correlation function of the OPO below threshold can be
written as

Ḡ
(2)(⌧) = lim

t!1

h��⌦â†(t)â†(t + ⌧)
↵��2 +

��⌦â†(t)â(t + ⌧)
↵��2 +

⌦
â
†(t)â(t)

↵2i
. (20)

Use then (18) to obtain

lim
t!1

⌦
â
†(t)â†(t + ⌧)

↵
=

1

4


�

1 � �
e
�(1��)�⌧ +

�

1 + �
e
�(1+�)�⌧

�
, (21a)

lim
t!1

⌦
â
†(t)â(t + ⌧)

↵
=

1

4


�

1 � �
e
�(1��)�⌧ � �

1 + �
e
�(1+�)�⌧

�
, (21b)

where � = g/� 2 [0, 1[. Show from these expressions that Ḡ
(2)(⌧) is a monotonically decreasing function of time.

Does this match your answer in the first question of the exercise?
Hint: For the first step, just apply the identity hÂB̂i = hB̂†

Â
†i⇤. For the second part, just write the annihilation

and creation operators as a function of the position and momentum quadratures, and use (18).
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VII. EFFECTIVE MODELS: ELIMINATION OF SPURIOUS DEGREES OF FREEDOM

A. Key questions of the chapter

1. What is an e↵ective model? Can you explain in which situations we might expect them to appear?

2. Consider a closed system described by a time-independent Hamiltonian. Define projector operators that divide
the Hilbert space into relevant and irrelevant sectors, and use them to find an equation of motion for the state
projected on the relevant sector. Define formally an e↵ective Hamiltonian from these equations, showing that
in general we obtain a non-Hermitian and time-dependent expression for it.

3. While for some problems the e↵ective Hamiltonian becomes Hermitian under suitable conditions, for other it
does not. For the latter, how do you interpret the fact that we cannot find a Hermitian e↵ective Hamiltonian?

4. Show that the original Hamiltonian of the system can be split into a term that doesn’t connect the relevant
and irrelevant subspaces (free Hamiltonian), and another that does (interaction Hamiltonian). Find a simple
expression for the e↵ective Hamiltonian up to second order in the interaction. Use it to show that a far-detuned
monochromatic optical beam can be used to generate a motional potential on the center of mass motion of an
atom.

5. Consider now an open system described by a master equation with time-independent Liouvillian. Define projec-
tor superoperators that divide the space of operators into relevant and irrelevant sectors, and use them to find
an e↵ective (time-nonlocal) master equation for the relevant part of the state. Show that the original Liouvillian
can be split into a term that does not connect the relevant and irrelevant subspaces (free Liouvillian), and
another one that does (interaction Liouvillian). Approximate the e↵ective master equation to second order in
the latter.

6. Consider a bipartite Hilbert space structure, consisting in the tensor product of two degrees of freedom that
we call system and environment. Consider physical situations in which, from the point of view of the system,
the environment remains approximately frozen in its free-Liouvillian equilibrium state. Define a projector
superoperator adapted to such situation. Particularize the previous e↵ective master equation to this choice of
projector, and show how it can be approximated by a time-local e↵ective master equation provided that the
correlation functions of the environment decay fast enough compared to all incoherent rates of the system’s
evolution.

7. Consider an atom at high temperature emitting in all directions. Consider as well one mode of an open cavity
at zero temperature. Argue qualitatively how the atom can be e↵ectively cool down and its emission directed
by coupling it to the cavity via a Jaynes-Cummings interaction, provided that the coupling is strong (i.e., larger
than the atomic spontaneous emission rate) but still much smaller than the cavity decay rate. Use the e↵ective
master equation derived above (taking the atom as the system and the cavity as the environment) to make this
statement mathematically rigorous.
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B. Graded exercises

Graded exercise 6: Some important e↵ective Hamiltonians

1. Kerr from down-conversion. Consider the down-conversion Hamiltonian

Ĥ = ~!0â
†
â + ~!2b̂

†
b̂ + i~g0

2
(b̂â†2 � b̂

†
â
2), (22)

in the large-detuning limit, |�| � g0, with � = !0�!2/2. Find an e↵ective Hamiltonian for the down-converted
mode, under the assumption that the pump mode is not populated initially. In particular, argue that P̂ = |0ibh0|
is the appropriate projector in this case, with b̂|0ib = 0, and show that the e↵ective Hamiltonian has the Kerr
form

Ĥe↵ = ~ (! � g) n̂ + ~gn̂
2
, (23)

with n̂ = â
†
â and g = �g

2
0/8�.

2. Raman driving. Consider the following problem: we would like to couple two atomic energy eigenstates whose
transition does not couple to a laser (e.g., because they have the same parity or their transition frequency is not
in the optical domain, but in the microwave domain, as usually happens with hyperfine states). You are going to
show that there is an e↵ective way of connecting them by using an additional atomic state and two far-detuned
laser beams that couple it to the original states. Consider specifically the situation depicted in Fig. 1, described
by the Hamiltonian

Ĥ(t) = �~"g|gihg| � ~"e|eihe| + ~
�
⌦ge

�i!gt|aihg| + ⌦⇤
g
e
i!gt|giha| + ⌦ee

�i!et|aihe| + ⌦⇤
e
e
i!et|eiha|

�
, (24)

where we have taken the energy origin in the auxiliary level |ai, and chosen the signs so that "j > 0.

Show that in a new picture defined by the transformation Ûc(t) = e
Ĥct/i~ with Ĥc = �~!g|gihg| � ~!e|eihe|, the

Hamiltonian reads

H̃ = ~�g|gihg| + ~�e|eihe| + ~
�
⌦g|aihg| + ⌦⇤

g
|giha| + ⌦e|aihe| + ⌦⇤

e
|eiha|

�
, (25)

with �j = !j � "j.
In the far-detuned limit |�j | � |⌦j |, argue that starting from an unpopulated auxiliary level, the relevant sector

of the Hilbert space is defined by the projector P̂ = |gihg| + |eihe|, leading to the e↵ective Hamiltonian

H̃e↵ ⇡ ~�g|gihg| + ~�e|eihe| + ~⌦e↵ |eihg| + ~⌦⇤
e↵ |gihe|, (26)

with ⌦e↵ = ⌦g⌦⇤
e
/�g.

Come back to the original picture and show that the Hamiltonian can be written in the common form (you’ll
need to make an energy shift)

Ĥe↵ =
~"
2
�̂z + ~

�
⌦e↵e

�i!eff t�̂
† + ⌦⇤

e↵e
i!eff t�̂

�
, (27)

where !e↵ = !e � !g, " = "g � "e, and the Pauli operators are defined in the usual way.
Hint: Just follow the steps we have developed in class, and be careful that at the end you will need to justify
the approximation ⌦g⌦⇤

e
/�g ⇡ ⌦g⌦⇤

e
/�e to get a Hermitian Hamiltonian.

cavity mode 
moving 
mirror 

laser 
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Optomechanical cooling Raman driving 

Figure 1. Sketches of the Raman driving and optomechanical cooling schemes.
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Graded exercise 7: Optomechanical sideband cooling

In the last exercise of the course we will study one research-level problem: how to cool down a mechanical resonator
by using laser light. It is research level in the sense that the theory behind it, which is what you we will do in
this exercise, was developed only about a decade ago, and the related experiments started only around the same
time. Altogether, these developments gave birth to the now well-established field of quantum optomechanics, which
is currently a subject of active investigation by many groups all around the world.

1. Consider an optical cavity with an the end mirror coupled to a fixed wall through a spring (Fig. 1), so that
it can oscillate at some frequency ⌦ (much smaller than optical frequencies). Take the position of the mirror
around its equilibrium location as a dynamical variable ẑ, whose evolution (in the absence of coupling to other

systems) is provided by a harmonic oscillator Hamiltonian Ĥm = 1
2m

p̂
2
z
+ m⌦2

2 ẑ
2, where m is the mirror’s mass

and p̂z its momentum, so that [ẑ, p̂z] = i~. Consider now one mode of the cavity with annihilation operator â

and resonance frequency !c when the cavity has length L. Using the fact that the cavity’s length is L + ẑ, and
assuming that the mirror’s deviations from equilibrium are small compared to L, show that the Hamiltonian of
the system can be approximated by

Ĥ = ~⌦b̂
†
b̂ + ~!câ

†
â + ~g0â†

â(b̂† + b̂), (28)

where we have introduced the annihilation and creation operators for the mechanical oscillator, b̂ and b̂
†, respec-

tively, and the so-called optomechanical coupling rate is given

g0 = �!c
zzpf

L
, (29)

where zzpf =
p
~/2⌦m refers to the zero-point fluctuations of the mirror’s position.

Hint: You will need to use the expression that we saw at the beginning of the lectures for the resonance
frequencies inside a cavity as a function of its length.

2. Assume now that the temperature is low enough for the number of thermal photons at optical frequencies to
be negligible, but large enough for the mechanical oscillator to have a lot of thermal excitations or phonons n̄

(this is what naturally happens at room temperature, since typical optical frequencies are hundreds of THz while
mechanical oscillations are never larger than GHz). Moreover, assume as well that the cavity is driven by a
laser, so that the master equation of the whole system reads

d⇢̂

dt
=

"
Ĥ

i~ +
�
Ee

�i!Lt
â
† � E⇤

e
i!Lt

â
�
, ⇢̂

#
+ Da[⇢̂] + �(n̄ + 1)Db[⇢̂] + �n̄Db† [⇢̂]. (30)

Show that there exists a transformation operator Ûc(t) such that the state ⇢̂0(t) = Û
†
c (t)⇢̂(t)Ûc(t) in the new

picture satisfies the time-independent master equation

d⇢̂
0

dt
=
h
�i⌦b̂

†
b̂ + i�câ

†
â + E â

† � E⇤
â � ig0â

†
â(b̂† + b̂), ⇢̂0

i
+ Da[⇢̂0] + �(n̄ + 1)Db[⇢̂

0] + �n̄Db† [⇢̂
0], (31)

where �c = !L � !c.

3. Assume that the state is coherent, that is, ⇢̂0(t) = |�(t)ih�(t)|⌦|↵(t)ih↵(t)|, and show that the coherent amplitudes
satisfy the equations of motion

↵̇ = E � [� i�c + ig0(� + �
⇤)]↵, (32a)

�̇ = �(� + i⌦)� � ig0|↵|2. (32b)

Hint: Find the equations of motion of hâi and hb̂i like we did in class for other problems starting from the master
equation, and use the fact that coherent states are right and left eigenstates of the annihilation and creation
operators, respectively.

4. Consider now a displacement operator with time-dependent amplitude

D̂c[�(t)] = e
�(t)ĉ†��

⇤(t)ĉ
, (33)
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where ĉ and ĉ
† are annihilation and creation operators, respectively, that is, [ĉ, ĉ†] = 1. Show that its time-

derivative can be written as

dD̂c[�(t)]

dt
= D̂c[�(t)]

✓
�̇ĉ

† � �̇
⇤
ĉ +

�̇�
⇤ � ��̇

⇤

2

◆
. (34)

Hint: Take � and �⇤ as independent variables, so that you can write the time derivative as d

dt
= �̇

@

@�
+ �̇

⇤ @

@�⇤ ,

and apply it to the normally-ordered form of the displacement operator D̂c[�(t)] = e
�|�(t)|2/2

e
�(t)ĉ†

e
��

⇤(t)ĉ.

5. Move to another picture defined by the transformation operator Û(t) = D̂b[�(t)]D̂a[↵(t)], where the amplitudes ↵
and � satisfy the classical equations of motion (32). Show that the transformed state ⇢̃(t) = Û

†(t)⇢̂0Û(t) satisfies
the master equation

d⇢̃

dt
=
h
�i⌦b̂

†
b̂ + i�(t)â†

â � i[g(t)â† + g
⇤(t)â + g0â

†
â](b̂† + b̂), ⇢̃

i
+ Da[⇢̃] + �(n̄ + 1)Db[⇢̃] + �n̄Db† [⇢̃], (35)

where we have defined the dressed detuning �(t) = �c�g0 [�(t) + �
⇤(t)] and the dressed optomechanical coupling

g(t) = g0↵(t).
Hint: Make the time derivative of ⇢̃(t) and use (34), (31), and the displacement formulas Û

†(t)âÛ(t) = â +↵(t)
and Û

†(t)b̂Û(t) = b̂ + �(t), to rewrite it as (35). You should obtain extra terms in the Hamiltonian linear in the
annihilation and creation operators, but this terms vanish identically thanks to the classical equations (32).

6. Next we are going to find an e↵ective master equation for the mechanical oscillator. Hence, we make the choices
(we assume from now on that the classical solution is time-independent)

LS[⇢̃] =
h
�i⌦b̂

†
b̂, ⇢̃

i
+ �(n̄ + 1)Db[⇢̃] + �n̄Db† [⇢̃], (36a)

LE[⇢̃] =
⇥
i�â

†
â, ⇢̃
⇤
+ Da[⇢̃], (36b)

L1[⇢̃] =


�i (gâ

† + g
⇤
â + g0â

†
â)X̂| {z }

Ĥ1/~

, ⇢̃

�
, (36c)

where we have defined the mechanical position quadrature X̂ = b̂
† + b̂. Show that the stationary state of the free

cavity mode is vacuum, ⇢̄E = |0ih0|, and then prove that

PL1P[Ŷ ] = 0, (37)

for any operator Ŷ , where the projector superoperator acts as P[Ŷ ] = trE{Ŷ } ⌦ ⇢̄E.
Hint: Just apply the definition of the projector to (37), and you should be able to write it as something
proportional to h0|â|0i and h0|â†

â|0i.

7. Note that the Hamiltonian can be written as Ĥ1/~ =
P3

m=1 gmŜm ⌦ Êm, with the choices g2 = g = g
⇤
1 , g3 = g0,

Ŝ1 = Ŝ2 = Ŝ3 = X̂, Ê1 = â = Ê
†
2, and Ê3 = â

†
â. Show that the environmental operators are all closed on their

own, and use the quantum regression formula to show that (⌧ > 0)

lim
t!1

hÂ(t)â(t + ⌧)Ĉ(t)iE = h0|ÂâĈ|0iEe
�(�i�)⌧

, (38a)

lim
t!1

hÂ(t)â(t + ⌧)Ĉ(t)iE = h0|Ââ
†
Ĉ|0iEe

�(+i�)⌧ (38b)

lim
t!1

hÂ(t)â†(t + ⌧)â(t + ⌧)Ĉ(t)iE = h0|Ââ
†
âĈ|0iEe

�2⌧
, (38c)

for any environmental operators Â and Ĉ. Then, show that the cavity correlators required for the mechanical
e↵ective master equation read as

Cmn(⌧) = e
�(+i�)⌧

�m1�n2, Knm(⌧) = e
�(�i�)⌧

�n1�m2. (39)

Hint: Follow the steps followed in the example of the lectures.
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8. Take ĤS = ~⌦b̂
†
b̂ as the only part of the mechanical evolution which is relevant within the decay of the cavity

correlators. Show that

X̃(⌧) = e
ĤS⌧/i~

X̂e
�ĤS⌧/i~ = e

i⌦⌧
b̂ + e

�i⌦⌧
b̂
†
, (40)

and then prove that the e↵ective mechanical master equation

d⇢̃S

dt
= LS[⇢̃S] + |g|2

Z
t

0
d⌧

h
C12(⌧)X̂ ⇢̃SX̂(⌧) � K12(⌧)X̂X̂(⌧)⇢̃S + H.c.

i
, (41)

can be written in the t � 
�1 limit as

d⇢̃S

dt
= LS[⇢̃S] + L�[⇢̃S] + L+[⇢̃S] + LNRW[⇢̃S], (42)

with

L�[⇢̃S] = �opt
� Db[⇢̃] � i[�⌦�b̂

†
b̂, ⇢̃], L+[⇢̃S] = �opt

+ Db† [⇢̃] � i[�⌦+b̂
†
b̂, ⇢̃], (43a)

LNRW[⇢̃S] = |g|2
"

b̂⇢̃b̂

+ i(� � ⌦)
+

b̂
†
⇢̃b̂

†

+ i(� + ⌦)
� b̂

2
⇢̃

� i(� + ⌦)
� ⇢̃b̂

†2

� i(� � ⌦)
+ H.c.

#
, (43b)

and

�opt
⌥ =

|g|2/
1 +

�
�±⌦



�2 , �⌦opt
⌥ =

|g|2 (� ± ⌦)

2 + (� ± ⌦)2
.

Hint: Just perform the time integrals (taking the limit t/ � 1), and reorder the terms in the proper way.

9. Argue that LNRW can be neglected within a rotating-wave approximation provided that

|g|2p
2 + (� ± ⌦)2

⌧ 2⌦. (44)

Within this approximation, show that the e↵ective mechanical master equation can be written as

d⇢̃S

dt
=
h
�i(⌦ + �⌦� + �⌦+)b̂†b̂, ⇢̃S

i
+ ��Db[⇢̃S] + �+Db† [⇢̃S], (45)

with

�� = �(n̄ + 1) + �opt
� , �+ = �n̄ + �opt

+ , (46)

which can be rewritten in the standard form

d⇢̃S

dt
=
h
�i⌦e↵ b̂

†
b̂, ⇢̃S

i
+ �e↵(n̄e↵ + 1)Db[⇢̃S] + �e↵ n̄e↵Db† [⇢̃S], (47)

with

⌦e↵ = ⌦ + �⌦� + �⌦+, (48a)

�e↵ = �� � �+ = �

"
1 +

C

1 +
�
�+⌦



�2 � C

1 +
�
��⌦



�2

#
, (48b)

n̄e↵ =
�+

�� � �+
=

n̄ + C

1+(��⌦
 )2

1 + C

1+(�+⌦
 )2

� C

1+(��⌦
 )2

, (48c)

where we have defined the cooperativity C = |g|2/�.
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10. Inspect n̄e↵ , and argue that the best cooling is obtained when � = �⌦ (red sideband driving) and ⌦ �  (resolved
sideband regime). Under these conditions, show that when C � 1, then we have

�e↵ ⇡ �C, n̄e↵ ⇡ n̄

C
+


2

4⌦2
, (49)

so that when C � n̄, we obtain the minimum e↵ective thermal occupation n̄e↵ ⇡ 
2

4⌦2 .

11. Self-consistency check: show that all the approximations required to derive the e↵ective master equation are
compatible with the cooling conditions.

12. Finally, argue that the asymptotic state of this equation in the original Schrödinger picture corresponds to the
displaced thermal state

lim
t!1

⇢̂S(t) = D̂b(�)⇢̄th(n̄e↵)D̂†
b
(�). (50)


