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The theory of Gaussian quantum fluctuations around classical steady states in nonlinear quantum-optical
systems (also known as standard linearization) is a cornerstone for the analysis of such systems. Its
simplicity, together with its accuracy far from critical points or situations where the nonlinearity reaches the
strong coupling regime, has turned it into a widespread technique, being the first method of choice in most
works on the subject. However, such a technique finds strong practical and conceptual complications when
one tries to apply it to situations in which the classical long-time solution is time dependent, a most
prominent example being spontaneous limit-cycle formation. Here, we introduce a linearization scheme
adapted to such situations, using the driven Van der Pol oscillator as a test bed for the method, which allows
us to compare it with full numerical simulations. On a conceptual level, the scheme relies on the connection
between the emergence of limit cycles and the spontaneous breaking of the symmetry under temporal
translations. On the practical side, the method keeps the simplicity and linear scaling with the size
of the problem (number of modes) characteristic of standard linearization, making it applicable to large
(many-body) systems.
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Introduction.—The advent of modern quantum technol-
ogies has triggered the discovery of a plethora of optical,
atomic, and solid state devices working in the quantum
regime [1] (see also the starting paragraph of Ref. [2] and
the references therein). A first-principles approach leads to
a description of such devices as open quantum systems
evolving according to nonlinear Hamiltonians and inco-
herent processes like dissipation [3–6]. Mathematically,
one has to face master equations for the state of the system
or quantum Langevin equations for its operators, which are
in general impossible to solve exactly.
On the other hand, quantum nonlinearities are very

difficult to observe in the laboratory and therefore most
experiments are well described by effective linear models.
The most widespread method for obtaining such linear
models starting from nonlinear ones is the so-called
standard linearization [7,8]. This consists of a Gaussian-
state ansatz centered at the solution of the system’s non-
linear equations in the classical limit [9]. The method
combines incredible simplicity with pretty good accuracy,
but can only be applied to stable solutions that are either
stationary or follow trivially an external temporal modu-
lation. This excludes the important case of systems that
undergo self-oscillations. These are a particular case of a
more general class of systems that being invariant under
continuous transformations of some kind (e.g., time trans-
lations in the aforementioned case) develop a solution that
breaks that invariance via spontaneous symmetry breaking.
This is because Goldstone’s theorem implies the existence
of a zero eigenvalue of the linear stability matrix, and hence
a direction of phase space that is not damped [10–14].

Standard linearization has been generalized to deal with
the spontaneous symmetry breaking of spatial, polarization,
and phase symmetries [10–19]. The method relies on
phase-space representations of the state to keep track of
the phase-space variable associated with the system’s
invariance, which will carry the largest part of the fluctua-
tions. Then, the theory can be linearized with respect to any
other phase-space variable.
However, an extension capable of dealing with self-

pulsing solutions is still missing, because in this case
symmetry breaking occurs in the very same variable that
parametrizes the dynamics of the system: time. While this
complicates enormously the problem compared to the other
type of symmetries, here we succeed in generalizing
standard linearization to one of the most prominent cases
of self-pulsing solutions: those that are periodic in time,
describing then a closed curve in phase space known as a
periodic orbit or limit cycle [20–23]. These are ubiquitous
to many optical phenomena, e.g., lasing [24–27], second-
harmonic generation [7,28,29], and optomechanics [30–37],
among others [38,39]. We show that the method approx-
imates the quantum state of the system by a mixture of
Gaussian states localized around the closed phase-space
trajectory, andwegive physicalmeaning to theway inwhich
quantum fluctuations are distributed along these Gaussian
states.
For convenience, we introduce the method for single-

mode problems, using the driven quantum Van der Pol
(VdP) oscillator [40–42] as an example. The simplicity of
this model will allow for comparisons with full numerical
simulations. The generalization to multimode problems is
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straightforward, and will be explored in the future for more
practical and complex problems such as optomechanical
cavities deep into the parametric instability regime [43,44].
Moreover, the complexity of the method scales only linearly
with the number of modes, providing then an efficient route
towards the analysis of many-body systems out of equilib-
rium such as optomechanical arrays [45–49] in the self-
oscillating regime.
Van der Pol model.—The quantum model for a driven

VdP oscillator consists of a single bosonic mode with
annihilation operator â, whose state ρ̂ evolves according to
the master equation [40,41]

dρ̂
dτ

¼
!
F
ffiffiffi
γ

p ðâ†− âÞþ iΔâ†â; ρ̂
#
þ γ
2
Da2 ½ρ̂&þDa† ½ρ̂&; ð1Þ

where DJ½ρ̂& ¼ 2Ĵ ρ̂ Ĵ† − Ĵ†Ĵ ρ̂−ρ̂Ĵ†Ĵ and the bosonic
operators satisfy canonical commutation relations
½â; â†& ¼ 1. The Hamiltonian includes a coherent drive at
rate F=

ffiffiffi
γ

p
> 0 detuned by Δ with respect to the natural

oscillation frequency of the oscillator (note that we work in
a picture rotating at the driving frequency). The model
contains two incoherent terms as well, the first one
corresponding to pairs of excitations lost irreversibly at
rate γ (nonlinear losses), and the second one to linear
pumping. The rate of the latter is used to normalize the rest
of the rates and frequencies, while its inverse normalizes
time, so that τ, γ, F, and Δ are dimensionless. We show
later that with these choices the classical phase diagram of
the system is determined uniquely by F and Δ, while γ
determines the strength of the quantum fluctuations.
The method is best introduced by mapping the master

equation to a set of stochastic equations. This can be done
with the help of phase-space quasiprobability distributions
[3,4,6,50] such as standard Wigner, Husimi, or Glauber-
Sudharsan representations. Here, we choose the positive P
representation [3,4,51,52] because, unlike the previous
representations, it always leads to stochastic equations
equivalent to the master equation without any approxima-
tion. This representation associates two independent sto-
chastic variables that we denote by β=

ffiffiffi
γ

p
and βþ=

ffiffiffi
γ

p
with

the annihilation and creation operators â and â†, respec-
tively, in such a way that normally ordered quantum
expectation values and stochastic averages are related by
hâ†mâni ¼ hβþmβni=γðmþnÞ=2 with m; n ∈ N. Using stan-
dard techniques [3,4,51–53], we show in Ref. [54] that the
stochastic amplitudes evolve according to

_β ¼ F þ ð1þ iΔ − βþβÞβ þ ffiffiffi
γ

p ½
ffiffiffi
2

p
ξðτÞ þ iβηðτÞ&; ð2aÞ

_βþ¼Fþð1− iΔ−βþβÞβþþ ffiffiffi
γ

p ½
ffiffiffi
2

p
ξ'ðτÞ− iβþηþðτÞ&;

ð2bÞ

where ηðτÞ, ηþðτÞ, and ξðτÞ are independent white Gaussian
noises (real the first two, and complex the last one) [54].

Limit cycles in the classical limit.—Coming from a
normally ordered representation (where vacuum noise is
already taken into account in the ordering), the equations
above predict a large-amplitude coherent state for γ → 0.We
talk then about the classical limit. The remaining determin-
istic equation _β ¼ F þ ð1þ iΔ − jβj2Þβ is a paradigm for
synchronization phenomena [41], and its phase diagram is
well known (we provide an overview of it in Ref. [54]). In
general terms, its stationary solutions, corresponding to
solutions oscillating at the driving frequency, are stable only
provided a strong enough drive is fed; otherwise, the
oscillations are not synchronized to the drive, so that for
long times the system ends up in a nontrivial stable periodic
solution β̄ðτÞ ¼ β̄ðτ þ TÞ. In Fig. 1 we show an example of
such limit cycle motion, where it can be appreciated that it
describes a closed curve in phase space [Fig. 1(a)], with

FIG. 1. Limit cycle emerging for Δ ¼
ffiffiffiffiffiffi
0.4

p
and F ¼

ffiffiffiffiffiffi
0.1

p
.

(a) We show in gray the closed trajectory described in phase
space. The arrows refer to the direction of the Floquet eigen-
vectors in selected points of the cycle. (b) Time evolution of the
cycle’s absolute value and phase. (c) Evolution of the variance of
θ, see Eqs. (3) and (8). Note that γ, which sets how relevant
quantum fluctuations are, appears just as an absolute scale for
the variance, whose dependence on time is set by the limit
cycle’s shape.
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an absolute value and a phase that oscillate periodically
[Fig. 1(b)]. Note that analytical solutions for these limit
cycles exist only in limited cases, and therefore one needs to
find them numerically in general.
Linearization around limit cycles.—We are now able

to introduce the linearization technique for quantum fluc-
tuations around limit cycles. We start by expanding the
stochastic amplitudes as

βðτ þ θÞ ¼ β̄ðτ þ θÞ þ bðτ þ θÞ; ð3aÞ

βþðτ þ θÞ ¼ β̄'ðτ þ θÞ þ bþðτ þ θÞ: ð3bÞ

Here, θ determines at which point of the cycle the solution
β̄ðτ þ θÞ starts for τ ¼ 0, and it is precisely the parameter
that is not fixed by the classical equations of motion:
β̄ðτ þ θÞ is a solution of the equations for any choice of
θ. Owed to this symmetry, quantum fluctuations cannot be
considered small in arbitrary points and directions of phase
space, as nothing prevents them from acting on θ without
resistance. Hence, in order for any linearized theory of
quantum fluctuations towork, θ has to be taken as a variable
itself (making it time dependent in the expansion above) and
only then can the fluctuations b and bþ be taken as small
quantities. In addition, _θ can be taken as a small quantity as
well, since variations of θ are induced by quantum noise,
which is weak in the region of interest. Introducing Eq. (3) in
Eq. (2), to first order in the small variables (including noise)
we then get [54]

_bðτÞ þ p0ðτÞ_θðτÞ ¼ LðτÞbðτÞ þ ffiffiffi
γ

p
nðτÞ; ð4Þ

where b¼ðb;bþÞT , p0¼ð∂τβ̄;∂τβ̄'ÞT , nðτÞ ¼ ½
ffiffiffi
2

p
ξðτÞþ

iβ̄ðτÞηðτÞ;
ffiffiffi
2

p
ξ'ðτÞ − iβ̄'ðτÞηþðτÞ&T , with the T superindex

denoting “transpose” (not to confuse with the time period),
and

LðτÞ ¼
$
1 − 2jβ̄ðτÞj2 þ iΔ −β̄ðτÞ2

−β̄'2ðτÞ 1 − 2jβ̄ðτÞj2 − iΔ

%
ð5Þ

is the linear stability matrix. Note that the noise correlations
can be written in the compact form hnjðτÞnlðτ0Þi ¼
NjlðτÞδðτ − τ0Þ, where Njl are the elements of the diffusion
matrix

N ðτÞ ¼
$−β̄2ðτÞ 2

2 −β̄'2ðτÞ

%
: ð6Þ

As we will see, the introduction of θðτÞ as an explicit
variable will allow us to describe properly spontaneous
temporal symmetry breaking and its associated undamped
phase-space direction.
Floquet method and eigenvectors.—The main difference

of Eq. (4) with respect to the linearized Langevin equations
found in previous linearization methods is the time perio-
dicity of p0ðτÞ and LðτÞ. We deal with this by applying
Floquet theory [22,55] as we explain next.

Let us define the fundamental matrix RðτÞ, which
satisfies the initial value problem _RðτÞ ¼ LðτÞRðτÞ with
Rð0Þ ¼ I , the latter being the identity matrix. From it, we
further define the matrix M through expðMTÞ ¼ RðTÞ,
and the T-periodic matrix PðτÞ ¼ RðτÞ expð−MτÞ. Given
the eigensystem fvj;wj; μjgj¼0;1 of M, composed of right
and left orthogonal (w†

jvl ¼ δjl) eigenvectors satisfying
Mvj ¼ μjvj and w†

jM ¼ μjw
†
j , we introduce the Floquet

eigenvectors pjðτÞ ¼ PðτÞvj and q†
jðτÞ ¼ w†

jP
−1ðτÞ. As

we show along the next sections, knowledge of these
vectors is enough to derive the linearized quantum proper-
ties of the system. To this aim, it is also convenient to point
out that they satisfy the initial value problems

_pjðτÞ ¼ ½LðτÞ − μj&pjðτÞ; pjð0Þ ¼ vj; ð7aÞ

_q†
jðτÞ ¼ q†

jðτÞ½μj − LðτÞ&; q†
jð0Þ ¼ w†

j ; ð7bÞ

and the orthogonality conditions q†
jðτÞplðτÞ ¼ δjl∀τ, as is

easily proven from their definition.
Let us now comment on the general properties of this

eigensystem, which we prove in detail in Ref. [54]. There
always exists a null eigenvalue, say μ0 ¼ 0, with related
(right) Floquet eigenvector p0ðτÞ. This property is a by-
product of the spontaneous temporal symmetry breaking
generated by the limit cycle (Goldstone theorem).
In the single-mode case, there is just another eigenvalue,
which is given by μ1 ¼

R
T
0 dτtrfLðτÞg=T, and has asso-

ciated (left) Floquet eigenvector q1ðτÞ ¼ ð−i∂τβ̄; i∂τβ̄'ÞT×
exp f

R
τ
0 dτ

0trfLðτ0Þg − μ1τg. This vector is the temporal
counterpart of the linear or angular momentum found in
previous works that deal with spatial symmetries [14].
Note that p0ðτÞ and q1ðτÞ are, respectively, the tangent

and normal vectors of the limit cycle’s trajectory, see
Fig. 1(a). We haven’t found explicit expressions of the
other Floquet eigenvectors in terms of β̄ðτÞ, but they can
always be found numerically in an efficient fashion, as we
do for Fig. 1(a).
Diffusion of the temporal pattern.—As a first physical

consequence of the properties above, we now show that θ is
diffusing due to quantum noise, and hence quantum
fluctuations smear off the classical periodic orbit.
In order to show this, we just need to apply q†

0ðτÞ on
Eq. (4), obtaining d=dτðq†

0bþ θÞ ¼ ffiffiffi
γ

p
q†
0ðτÞnðτÞ. Note

that by taking θ as a variable in Eq. (3) we introduced a
redundancy in the number of variables, which is now
consistently removed by setting q†

0b ¼ 0 (in other words,
introducing θ simply allowed us to track and give physical
meaning to this part of the quantum fluctuations). The
previous equation turns then into a diffusion equation for θ,
leading to a variance

h½θðτÞ − θð0Þ&2i ¼ γ
Z

τ

0
dτ0q†

0ðτ0ÞN ðτ0Þq'
0ðτ0Þ: ð8Þ
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Note that the kernel is periodic, and therefore, the coarse-
grained dynamics of θ corresponds to a diffusion process,
with a variance increasing linearly with time, making θ
fully undetermined asymptotically as shown in Fig. 1(c).
Steady state as a mixture of Gaussians.—The above

considerations imply that the steady state is formed by a
balanced mixture of Gaussian states, one for each value of
θ. As we prove below, the Wigner functions of these
Gaussian states [56] are given by

Wðr; τ þ θÞ ¼ e−
1
2½r−d̄ðτþθÞ&T V̄−1ðτþθÞ½r−d̄ðτþθÞ&

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfV̄ðτ þ θÞg

p ; ð9Þ

where r ¼ ðx; pÞT is the coordinate vector in phase space,
and the mean vector and covariance matrix are given by

d̄ðτÞ ¼ U½β̄ðτÞ; β̄'ðτÞ&T= ffiffiffi
γ

p
; ð10aÞ

V̄ðτÞ ¼ I þ CðτÞUp1ðτÞpT
1 ðτÞUT: ð10bÞ

U ¼ ð 1
−i

1
iÞ is the matrix that connects the complex repre-

sentation of the bosonic mode to its real representation in
phase space, and

CðτÞ ¼ lim
τ→∞

Z
τ

0
dτ0e2μ1ðτ−τ

0Þq†
1ðτ0ÞN ðτ0Þq'

1ðτ0Þ; ð11Þ

is a T-periodic function.
Let us now prove the expressions above. First, we

introduce the quadrature vector R ¼ Uðβ; βþÞT= ffiffiffi
γ

p
.

Within the positive P representation the elements of
the long-time mean vector d̄ and covariance matrix V̄ are
found as d̄mðτÞ¼limτ→∞hRmðτÞi and V̄mnðτÞ¼ δmnþ
limτ→∞hδRmðτÞδRnðτÞi, where δRm ¼ Rm − hRmi [56].
Next, note that the condition q†

0ðτÞbðτÞ ¼ 0 allows us to
write the quantum fluctuations as bðτÞ ¼ c1ðτÞp1ðτÞ, where
we define the projection c1ðτÞ ¼ q†

1ðτÞbðτÞ. Using the
expansion (3), we can then write the quadrature vector asffiffiffi
γ

p
RðτÞ ¼ U½β̄ðτÞ; β̄þðτÞ&T þ c1ðτÞUp1ðτÞ, whose stochas-

tic properties are all then concentrated on c1ðτÞ. On the
other hand, applying q†

1ðτÞ on Eq. (4) we find _c1¼ μ1c1þffiffiffi
γ

p
q†
1ðτÞnðτÞ, whose solution leads to the moments

limτ→∞hc1ðτÞi ¼ 0 and limτ→∞hc21ðτÞi ¼ γCðτÞ, which
provide the mean vector and covariance matrix in Eq. (10).
The steady state associated with the expansion (3) of the

stochastic variables is then given by the balanced mixture

W̄ðrÞ ¼
Z

T

0

dθ
T
Wðr; τ þ θÞ ¼

Z
T

0

dθ
T

Wðr; θÞ: ð12Þ

In Fig. 2 we compare the Wigner function (12) with the one
obtained by exact simulation [57] of the master equa-
tion (1). We find very good agreement even for relatively
large γ, where quantum fluctuations are still quite relevant,
as can be appreciated.

This Wigner function has a very suggestive interpreta-
tion, see Fig. 2. First, Eq. (10a) tells us that the Gaussian
states are centered along the points of the limit cycle’s
trajectory, as expected. As for quantum fluctuations, note
that the eigenvalues of the covariance matrix V̄ðθÞ are 1 and
detfV̄ðθÞg, which inform us about the variance along the
principal axes of the uncertainty ellipse. It is easy to check
that the directions of these principal axes follow the vectors
Uq0ðθÞ and Up1ðθÞ for the 1 and detfV̄ðθÞg eigenvalues,
respectively (see Fig. 2). Hence, the quadrature of the
Gaussian state that goes in the direction of q0ðθÞ
(Goldstone mode) carries vacuum fluctuations, which
one can trace back to the condition q†

0ðθÞbðθÞ ¼ 0 that
the method naturally demands. On the other hand, since in
principle all physical covariancematrices satisfy detfV̄g ≥ 1

FIG. 2. Steady-state Wigner functions of the driven VdP
oscillator, Eq. (1), for Δ ¼

ffiffiffiffiffiffi
0.4

p
, F ¼

ffiffiffiffiffiffi
0.1

p
, and two values

of γ, 0.1 and 0.01. In (a) and (b) we show the exact solutions, to
be compared with the mixture of Gaussians (c),(d) obtained
through linearization, see Eq. (12). In (e) and (f) we show a few of
these Gaussian states at selected points of the trajectory, in order
to see how these change along the limit cycle. Note how, as
shown explicitly in (e), all the Gaussians carry vacuum fluctua-
tions along the direction defined by the q0ðτÞ Floquet eigenvector
(black arrows), with varying fluctuations along the p1ðτÞ direc-
tion (gray arrows).
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(uncertainty principle) [56], this seems to suggest that the
quadrature going in the direction ofp1ðθÞ carries fluctuations
above the shot noise limit. While this is indeed the case for
the VdP oscillator studied here, our experience with other
nonlinear systems [14] tells us that we could find
detfV̄ðθÞg < 1 (squeezing below shot noise) without violat-
ing the uncertainty principle. This is because the two
quadratures of each Gaussian state are not conjugate vari-
ables, but they are both conjugate to the diffusing variable θ
[14], which is completely undetermined in the steady state.
Conclusions.—In this Letter we have introduced a

linearization method capable of dealing with quantum
nonlinear systems in the regime where they show sponta-
neous limit-cycle formation. The technique keeps the
simplicity of standard linearization around stationary sol-
utions. It requires finding the fundamental matrix of the
Floquet method over a period of the cycle by solving a
linear initial value problem with time-periodic coefficients.
Only two equations are added with each mode that is
introduced in the problem, giving the method a linear
scaling with the size of the system that makes it suitable
for complex driven-dissipative many-body problems such as
optomechanical arrays [45–49]. Moreover, the linearity of
the equations should give efficient access also to dynamical
objects such as multitime correlation functions, which are
sensitive to the diffusion of θ in general, and are of crucial
relevance for experiments [3,4,6,52] and the emergent field
of quantum synchronization [40–42,58–63].
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This supplemental material is divided in three sections. In the first one we derive the stochastic
Langevin equations associated with the master equation of the driven Van der Pol oscillator, and
proceed to their linearization. The second section is devoted to proving the properties of the Floquet
eigensystem that we introduced in the main text. In the last section we provide a detailed overview
of the phase diagram of the Van der Pol oscillator in the classical limit.

I. Derivation of the stochastic equations

The positive P representation of a (single-mode) state ⇢̂(⌧) is defined by [1–4]

⇢̂(⌧) =

Z

C2

d4↵P (↵; ⌧)
|↵ih↵+⇤|
h↵+⇤|↵i| {z }

ˆ

⇤(↵)

, (1)

with ↵ = (↵, ↵+)T . The distribution P (↵; ⌧) can always be chosen as a well behaved positive distribution (see below),
what is accomplished at the expense of doubling the phase space of the oscillator, since ↵ and ↵+ are two independent
complex variables. Moments in normal order can be evaluated as [1–4]

hâ†mâni =

Z

C2

d4↵P (↵)↵+m↵n. (2)

The master equation can be turned into a Fokker-Planck equation for the distribution P (↵; ⌧) as follows. First, we
introduce (1) in the master equation, Eq. (1) of the main text in our case, and use the properties

â⇤̂ = ↵⇤̂, ⇤̂â† = ↵+⇤̂, ⇤̂â = (↵ + @↵+)⇤̂, â†⇤̂ = (↵+ + @↵)⇤̂, (3)

leading to an equation of the form

Z

C2

d4↵⇤̂(↵)@⌧P (↵; ⌧) =

Z

C2

d4↵P (↵; ⌧)

2

4
X

j=↵,↵+

Aj(↵)@j +
1

2

X

j,l=↵,↵+

Djl(↵)@j@l

3

5 ⇤̂(↵). (4)

Here Aj and Djl are the components of the drift vector and the di↵usion matrix, respectively, which in our case are
found to be

A =

✓
(1 + i� � �↵+↵)↵ + F/

p
�

(1 � i� � �↵+↵)↵+ + F/
p

�

◆
, (5a)

D =

✓
��↵2 2

2 ��↵+2

◆
. (5b)

Note that the analyticity of ⇤̂(↵) gives us certain freedom to choose how the the complex derivatives @↵ and @↵+ act
on it, what can be used to always get a positive semidefinite di↵usion matrix [3, 6]. Integrating by parts the right-hand
side of Eq. (4), and neglecting boundary terms under the physical assumption that the distribution P (↵; ⌧) decays
fast enough, we obtain the Fokker-Planck equation

@⌧P (↵; ⌧) =

2

4�
X

j=↵,↵+

@jAj(↵) +
1

2

X

j,l=↵,↵+

@j@lDjl(↵)

3

5 P (↵; ⌧). (6)

This equation is equivalent to the following stochastic Langevin equations [1–5]

↵̇ = A + B⌘(⌧), (7)



2

where B is a 2 ⇥ N matrix called the noise matrix which satisfies BBT = D, and ⌘(⌧) a vector whose N components
are independent real white Gaussian noises (N can be chosen at will, see below). Given the solution ↵[⌧ ;⌘] as a
functional of the noises, the equivalence must be understood in a statistical sense as

hâ†mâni =

Z

C2

d4↵P (↵; ⌧)↵+m↵n = h↵+m[⌧ ;⌘]↵n[⌧ ;⌘]i
stochastic

, (8)

that is, averaging over the distribution equals averaging over stochastic realizations. In the following we remove the
“stochastic” label from the average, since the context will never allow confusing it with quantum expectation values
of operators.

As mentioned above, the “internal” dimension N of the noise matrix B is arbitrary in expression (7). In general, it
is possible to find a square noise matrix (N = 2 in our case), but sometimes it is simpler (or even more physical) to
work with N > 2. In particular, in our case, we choose to work with the noise matrix

B =

✓
i
p

�↵ 0 1 i
0 �i

p
�↵+ 1 �i

◆
, (9)

leading to the Langevin equations

↵̇ =
F
p

�
+ (1 + i� � �↵+↵)↵ + i

p
�↵⌘(⌧) +

p
2⇠(⌧), (10a)

↵̇+ =
F
p

�
+ (1 � i� � �↵+↵)↵+ � i

p
�↵+⌘+(⌧) +

p
2⇠⇤(⌧), (10b)

where ⌘(⌧), ⌘+(⌧), and ⇠(⌧) are independent white Gaussian noises (real the first two, and complex the last one),
that is, they have zero average and

h⌘(⌧)⌘(⌧ 0)i = h⌘+(⌧)⌘+(⌧ 0)i = h⇠(⌧)⇠⇤(⌧ 0)i = �(⌧ � ⌧ 0), (11)

are their only nonzero two-time correlators.
It is finally interesting to rewrite the equations in terms of new rescaled variables � =

p
�↵ and �+ =

p
�↵+, which

read

�̇ = F + (1 + i� � �+�)� +
p

�[
p

2⇠(⌧) + i�⌘(⌧)], (12a)

�̇+ = F + (1 � i� � �+�)�+ +
p

�[
p

2⇠⇤(⌧) � i�+⌘+(⌧)]. (12b)

These are the equations that we provided in Eqs. (2) of the main text. We took them as a starting point to present
the linearization technique, which we show in detail next.

The general linearization technique for dissipative systems a↵ected by spontaneous breaking of a continuous sym-
metry starts by applying the symmetry transformation to the system, but with a parameter that is allowed to vary
in time [6]. In the present case, the method finds the additional di�culty that the symmetry transformation is a shift
in time ⌧ ! ⌧ + ✓, and if the parameter ✓ is to depend on time, the shift must be applied on it as well. Technically,
this makes it an infinitely-iterated function ✓(⌧ + ✓(⌧ + ✓(...))), which makes the derivation more elaborate than in
previous systems [6]. The (time-shifted) stochastic amplitudes are expanded as the classical limit cycle plus some
small quantum that can be assumed to be small,

�(⌧ + ✓) = �̄(⌧ + ✓) + b(⌧ + ✓), �+(⌧ + ✓) = �̄⇤(⌧ + ✓) + b+(⌧ + ✓), (13)

where we have omitted the time dependence of ✓ for ease of notation.
When plugging this expressions into the stochastic Langevin equations (12), it is important to keep in mind that

the derivative of ✓ can be assumed small, since the method tells us self-consistently that they are directly proportional
to quantum noise, see the paragraph before Eq. (8) in the main text. This means that we can approximate

d

d⌧
✓(⌧ + ✓(⌧ + ✓(...))) = @⌧✓(⌧ + ✓(⌧ + ✓(...)))[1 + [@⌧✓(⌧ + ✓(⌧ + ✓(...)))][1 + [@⌧✓(⌧ + ✓(⌧ + ✓(...)))][1 + ...]]]

⇡ @⌧✓(⌧ + ✓(⌧ + ✓(...))), (14)

and therefore

d

d⌧
�(⌧ + ✓(⌧ + ✓(...))) ⇡ [@⌧ �̄(⌧ + ✓(⌧ + ✓(...))) + @⌧ b(⌧ + ✓(⌧ + ✓(...)))][1 + @⌧✓(⌧ + ✓(...))]

⇡ @⌧ �̄(⌧ + ✓(⌧ + ✓(...)))@⌧✓(⌧ + ✓(...)) + @⌧ b(⌧ + ✓(⌧ + ✓(...))), (15)
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and similarly for �+, where in the last line we have assumed that the fluctuations b and related derivatives are small.
Introducing these expansions into Eqs. (12) evaluated at ⌧ + ✓(⌧ + ✓(...)), and keeping terms linear in noises and the
small variables mentioned above, we obtain the linearized Langevin equations introduced in Eq. (4) of the main text,
but time-shifted by ✓(⌧ + ✓(...)). The last step consists then in shifting the time arguments by �✓(⌧ + ✓(...)), leading
to the linearized equations as presented in the main text.

II. Floquet eigensystem

In order to solve the linearized Langevin equations we applied the Floquet method in the main text. In particular, we
showed that all the system properties are easy to derive from the Floquet eigensystem, that is, from the eigenvalues
{µj}j=0,1 and eigenvectors satisfying

ṗj (⌧) = [L (⌧) � µj ]pj (⌧) , pj (0) = vj , (16a)

q̇†
j (⌧) = q†

j (⌧) [µj � L (⌧)] , q†
j (0) = w†

j , (16b)

and the orthogonality conditions q†
j(⌧)pl(⌧) = �jl 8⌧ . In general, this has to be done numerically, especially since the

limit cycle itself does not admit analytic expressions except in special situations. However, we mentioned in the main
text a couple of analytic properties of the eigensystem that we prove in this section.

Since these properties are not specific to the Van der Pol oscillator, but general for any single-mode problem, let
us consider a completely general single-mode limit cycle �̄(⌧) satisfying the equation

d�̄

d⌧
= A(�̄, �̄⇤), (17)

with associated linear stability matrix

L(⌧) =

✓
@

¯�A @
¯�⇤A

@
¯�A⇤ @

¯�⇤A⇤

◆
. (18)

It is convenient to define the vector ⇧(⌧) = [�̄(⌧), �̄⇤(⌧)]T . Its first derivative satisfies the equation ⇧̇ = (A, A⇤)T ,
leading to a second derivative obeying

⇧̈ = L(⌧)⇧̇, (19)

as is trivially proven from (17) and (18).
The first property we want to prove is the existence of one null eigenvalue, say µ

0

= 0, with an associated (right)
Floquet eigenvector p

0

= (@⌧ �̄, @⌧ �̄⇤)T . In order to prove it just note that according to (16) p
0

satisfies the equation
ṗ

0

(⌧) = [L (⌧) � µ
0

]p
0

(⌧) by construction. On the other hand, since p
0

= ⇧̇, we also have ṗ
0

= L (⌧)p
0

by virtue
of (19). Comparing these two expressions we obtain µ

0

= 0. This property finds its roots on the Goldstone theorem,
and indeed can be proven for an arbitrary number of modes by naturally extending all the definitions.

The other property that we provided in the main text was that the other eigenvalue takes the value µ
1

= tr{L(⌧)},

where we define here tr{L(⌧)} =
R T
0

d⌧
T tr{L(⌧)}, with associated (left) Floquet eigenvector

q
1

(⌧) = ⇧
1

(⌧) exp

⇢
�

Z ⌧

0

d⌧ 0
h
tr{L(⌧)} � tr{L(⌧)}

i�
, (20)

with ⇧
1

(⌧) = [�i@⌧ �̄(⌧), i@⌧ �̄⇤(⌧)]T . The expression for the eigenvalue is readily proven by noticing that for a general
Floquet problem, the following property holds [7, 8]:

P
j µj = tr{L(⌧)}. Hence, for a single-mode problem we obtain

what we are looking for, since there are only two eigenvalues and one of them is 0 as proven above.
To prove that (20) is the corresponding eigenvector we need to work a bit harder. We will proceed by making the

ansatz q
1

(⌧) = f(⌧)⇧
1

(⌧) for some real function f(⌧), and proving that such a function exists. It is convenient to
remind ourselves of certain objects that naturally appear in the Floquet method (see the main text for more details).
First, the fundamental matrix R which satisfies the equation Ṙ = L(⌧)R. This matrix defines a constant matrix
M through exp (MT ) = R(⌧), and a periodic matrix P(⌧) = R(⌧) exp (�M⌧). The Floquet eigenvectors are then
defined as pj(⌧) = P(⌧)vj and q†

j(⌧) = w†
jP�1(⌧), where {vj ,wj ; µj}j=0,1 is the eigensystem of M, composed of



4

right and left orthogonal eigenvectors satisfying Mvj = µjvj and w†
jM = µjw

†
j . With these definitions at hand, we

start by noting that

q†
1

(⌧) = w†
1

P�1(⌧) = w†
1

eM⌧R�1(⌧) = eµ1⌧w†
1

R�1(⌧). (21)

The time derivative of this expression and our ansatz yields

ḟ⇧†
1

+ f⇧̇
†
1

= µ
1

eµ1⌧w†
1

R�1 + eµ1⌧w†
1

d

d⌧
R�1 = f⇧†

1

[µ
1

+ L] , (22)

where we have used that, by definition, the fundamental matrix satisfies d
d⌧ R�1 = R�1L. From this expression, we

see that ⇧̇
†
1

can be written as

⇧̇
†
1

= ⇧†
1

"
µ

1

� ḟ

f
� L

#
. (23)

The next step is obtaining ⇧̇
†
1

following a di↵erent path. Let us define the matrix

J =

✓
1 0
0 �1

◆
, (24)

which allows us to write

⇧
1

(⌧) = �iJ ⇧̇(⌧) =) ⇧̇
1

= �iJ ⇧̈ = �iJ L ⇧̇ = J LJ⇧
1

. (25)

Next, we exploit the structure of any single-mode linear stability matrix (18) to write

J LJ = tr{L}I � L†, (26)

which combined with the previous result leads to

⇧̇
†
1

= ⇧†
1

[tr{L(⌧)}I � L(⌧)] . (27)

Finally, comparing (23) and (27), and using the expression that we found for µ
1

we get

ḟ

f
= tr{L(⌧)} � tr{L(⌧)}, (28)

which shows that there is a indeed a solution for the ansatz function,

f(⌧) = exp

⇢Z ⌧

0

d⌧ 0
h
tr{L(⌧)} � tr{L(⌧)}

i�
, (29)

where we have taken f(0) = 1 for definiteness. This completes the proof of (20).

III. Phase diagram in the classical limit

In this section we analyze in detail the properties of the driven Van der Pol oscillator in the classical limit. In the
main text, we argued that the classical limit corresponds to � ! 0 in the stochastic Langevin equations. Let us show
here, for completeness, that these are indeed the equations that are obtained by assuming the state of the system to
be coherent at all times, ⇢̂(⌧) = |�(⌧)/

p
�ih�(⌧)/

p
�|, with a time-dependent amplitude �(⌧) that will be our classical

variable (normalized to
p

� for convenience). In order to find an evolution equation for �, we proceed as follows.

Using the master equation (1) of the main text, the expectation value of any operator Â is shown to evolve according
to

d

d⌧
hÂi =

F
p

�
h[Â, â†]i +

F
p

�
h[Â, â]i + i�h[Â, â†â]i +

�

2
h[â†2, Â]â2i +

�

2
hâ†2[Â, â2]i + h[â, Â]â†i + hâ[Â, â†]i. (30)
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Im{�±} �= 0

Im{�±} �= 0

Re{�±} < 0
�

+

> 0
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HB: I = 1/2

UP: �
2 = I

2
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+ : 3I = 2 +

p
1 � 2�2

TP�: 3I = 2 �
p

1 � 2�
2

�±
>

0

FIG. 1. Phase driagram of the driven Van der Pol oscillator in the classical limit. The phase of the system is completely
determined by two parameters, namely the square of the detuning �2 and the oscillator intensity I. The TP± curves correspond
to the turning points of the S-shaped response of the harmonic intensity to the injection F 2 (see Fig. 2), which are both static
instabilities. The HB line corresponds to a Hopf bifurcation which connects limit cycles with stationary solutions. The UP
curve corresponds to the points where the eigenvalues change from complex to real, which for this system coincide with the
points where phase oscillations change from underdamped to overdamped. We see that this system o↵ers a wide variety of
phases.

Applied to the annihilation operator â and using the coherent state ansatz, such that hâ†mâni = �⇤m�n/�(m+n)/2,
we obtain the equation of motion

�̇ = F + (i� + 1 � |�|2)�, (31)

which is precisely the one we introduced in the main text and coincides with the stochastic Langevin equations in the
� ! 0 limit. Note that there are only two parameters in this equation, which fully characterize the phase diagram in
this limit, as we show in Fig. 1 (see below for the meaning of I).

Depending on the parameters, the asymptotic (long-time term) solutions of this equation may be time independent
(stationary) or dependent (limit cycles). In order to identify when these di↵erent regimes happen, we first find
the stationary asymptotic solutions �̄ and study their stability. Let us write the amplitude as �̄ =

p
Iei', with

I 2 [0, 1[ and ' 2 [0, 2⇡[, which introduced in the equation of motion (31) leads to the steady-state equation
Fe�i' = (I2 � 1 � i�)

p
I, or the equation for the oscillator intensity I

F 2 =
�
�2 + 1

�
I � 2I2 + I3, (32)

from which the phase is recovered as ' = arg{1 � I2 � i�}. This equation may possess one or several real and
positive solutions, depending on the parameters. In order to determine when each of these possibilities occur, we
simply determine the turning points I = I± of the S-shaped curve I(F 2) shown in Figs. 2. These can be found as the
extrema of F 2(I),

@F 2

@I

����
I=I±

=
�
�2 + 1

�
� 4I± + 3I2

± = 0 =) I± =
2 ±

p
1 � 3�2

3
. (33)

Hence, we see that these points only exist when �2 < 1/3. The values of the injection F 2 corresponding to these
intensities can be written as

F 2

± =
2

27

⇣
2 ±

p
1 � 3�2

⌘ ⇣
1 + 3�2 ⌥

p
1 � 3�2

⌘
. (34)

For injections between these two values, we then find three-valued intensities.
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⌧
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Im{↵}

Re{↵}

HB 

UP 

�2 = 0 0 < �2 < 1/4

1/4 < �2 < 1/3�2 = 1/4

UP

UP

HB

TP�

TP
+

UP=HB=TP�

TP
+

TP�

TP
+

TP�

TP
+

�2 = 1/3

HB

TP
+

=TP�

�2 > 1/3

× 

(a) (b) 

(c) (d) 

(e) (f) 

FIG. 2. Dynamical behaviour of the oscillator intensity as a function of the injection F 2, in the �2-regions with distinct
properties. The solid lines provide the intensity I of stable stationary amplitudes with overdamped phase oscillations; the
solid lines with yellow dashing provide the same, but when phase oscillations are underdamped; the dashed lines correspond to
unstable stationary solutions; the grey circles correspond to the mean intensity of the limit cycles which we find numerically.
The insets show the temporal dynamics of the intensity I (upper panel) as well as the trajectory of the limit cycle in the phase
space formed by the real and imaginary parts of the amplitude � (lower panel).

Let’s now consider the stability of these solutions [7, 9]. It is convenient to take the intensity I as a parameter
rather than F , since the latter is uniquely determined from the former through Eq. (32), and not the other way
around. In order to analyze the stability of a stationary solution �̄, we write the amplitudes as �(t) = �̄ + ��(t), and
consider terms up to linear order in the evolution equation (31). Defining the vector � = col(�, �⇤), this provides an
evolution equation of the form ��̇ = L��, where the linear stability matrix reads

L =

✓
1 � 2I + i� ��̄2

��̄⇤2 1 � 2I � i�

◆
, (35)

with characteristic polynomial

P (�) = 1 � 4I + 3I2 + �2 + 2(2I � 1)� + �2, (36)
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and therefore eigenvalues

�± = 1 � 2I ±
p

I2 � �2. (37)

Whenever the real part of at least one of these eigenvalues is positive, the corresponding solution will be unstable.
The points of the parameter space where the real part of an eigenvalue is zero are known as instabilities or bifurcations
[9]. It is customary to start checking the simplest instabilities, those where the imaginary part of the corresponding
eigenvalue is zero as well, which we denote by static instabilities. In our case, it is readily shown that the turning
points I = I± are the only static instabilities (see the curves marked as TP± in Fig. 1). On the other hand, the
instabilities can appear in eigenvalues with nonzero imaginary parts, in which case we talk about Hopf bifurcations
[9]. In our case, imaginary parts in the eigenvalues (37) appear only when I2 < �2 (see the curve marked as UP1 in
Fig. 1). We then find a Hopf bifurcation at I = 1/2 (see the curve marked as HB in Fig. 1). A careful analysis of
the signs of the real part of the eigenvalues in between these instability curves leads to the phase diagram shown in
Fig. 1. Note that we are able to draw such a simple (but rich) phase diagram because we are dealing with a single
harmonic mode whose eigenvalues depend only on two parameters (I and �2) and have simple analytic expressions.

It is also interesting to understand the behaviour of the oscillator’s amplitude as a function of the injection F 2 in
the di↵erent regions of the phase diagram, in particular for di↵erent values of �2. This is what we can see in Fig. 2:

• It can be appreciated that for � = 0 only the upper branch is stable, and increases monotonically with the
injection from I = 1 at F = 0 (Fig. 2a). Hence, the oscillator’s amplitude has a unique stationary response for
all injections, since the drive is in resonance with the oscillator’s natural frequency.

• When 0 < �2 < 1/4 (Fig. 2b) the upper turning point departs from F = 0. The asymptotic solution corresponds
then to a limit cycle for 0 < F < F

+

and to a stationary solution in the upper branch for F > F
+

. The physical
interpretation is clear: as soon as the drive is detuned, synchronization of the oscillator’s oscillations to the
drive requires a minimum value of the injection in order to work. Note that for F = 0, the limit cycles are of
the trivial form ↵(⌧) = ei�⌧+i'/�, which simply means that the amplitude oscillates at the natural frequency
of the oscillator.

• At �2 = 1/4 (Fig. 2c), both the Hopf bifurcation HB and the UP point appear precisely at the lower turning
point. If the detuning is made larger, specifically 1/4 < �2 < 1/3 (Fig. 2d), both the Hopf bifurcation and
the UP point are located somewhere along the lower branch of the S-shaped curve, the former always below
the latter. The portion of the lower branch in between HB and TP� becomes stable, with underdamped phase
oscillations in between HB and UP. We observe that in this regime there is coexistence between the stationary
solutions of the upper branch, and either limit cycles connected to the HB from F = 0 or stationary solutions
in the lower branch.

• For �2 = 1/3 the turning points coalesce (Fig. 2e), and therefore for �2 � 1/3 the steady-state curve is no
longer S-shaped, but increases monotonically with the injection as shown in Fig. 2f. We then identify a unique
behaviour of the amplitude for each value of the injection which can correspond to limit cycles, underdamped
phase oscillations, or overdamped phase oscillations.

It is interesting to note the di↵erent ways in which the limit cycles converge to the stationary solutions in the
di↵erent regimes, which is what the insets allow us to discuss. In particular, when the limit cycles connect with a
static instability (such as in Figs. 2b and c, where they connect with the upper turning point), their periodic pattern
has a longer stationary plateau the closer we get to the instability, eventually reaching an infinite duration. On the
other hand, when the limit cycles connect with a Hopf instability (such as in Figs. 2d, e, and f), their oscillation
frequency becomes closer to

p
�2 � I2 the closer they are to the instability, while at the same time their oscillation

amplitude becomes smaller and smaller, eventually reaching zero.
Hence, we see that the VdP oscillator has a rich dynamical behaviour in the classical limit.
One final thing left to prove is that, as mentioned above above, the region where the eigenvalues are complex

(I2 < �2) coincides with the region of underdamped phase oscillations. In order to show this, let us write the
oscillator’s amplitude in terms of intensity and phase fluctuations around the steady state �̄ as

�(t) =
p

I + �I(t)ei['+�'(t)] ⇡
�',�I/I⌧1

�̄


1 + i�'(t) +

�I(t)

2I

�
, (38)

1
UP stands for “underdamped phase” oscillations, a name that will get meaning later, when we show that the I2 < �

2
region corresponds

precisely to this regime of motion.
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so that the amplitude fluctuations can be written as �� = �̄(i�' + �I/2I). Using now the form of the linear stability
matrix (35), we then get from the real and imaginary parts of the linear system for the fluctuations the following
phase and amplitude equations

�'̇ = (1 � 2I � I cos ')�' + (I sin ' + �)
�I

2I
, (39a)

�İ

2I
= (1 � 2I + I cos ')

�I

2I
+ (I sin ' � �)�'. (39b)

These first order di↵erential equations can be easily recasted as the following second order di↵erential equation for
the phase fluctuations

�'̈ + 2(2I � 1)| {z }
�

�'̇ + [�2 + (2I � 1)2 � I2]| {z }
⌦

2

�' = 0, (40)

which is the equation of a damped harmonic oscillator. Hence, the condition for underdamped phase oscillations is
�2 < 4⌦2, leading to I2 < �2, just as we wanted to prove.
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