10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
6 August 2017

REVISED
23 November 2017

ACCEPTED FOR PUBLICATION
21 December 2017

PUBLISHED
5 February 2018

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

New J. Phys. 20 (2018) 023004 https://doi.org/10.1088/1367-2630/aaa395

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Active locking and entanglement in type Il optical parametric
oscillators

Joaquin Ruiz-Rivas', Germén ] de Valcarcel' and Carlos Navarrete-Benlloch™*

! Departament d’Optica, Universitat de Valencia, Dr. Moliner 50, E-46100 Burjassot, Spain

> Max-Planck-Institute fiir die Physik des Lichts, Staudtstr. 2, D-91058 Erlangen, Germany

* Institute for Theoretical Physics, Universitit Erlangen-Niirnberg, Staudtstr. 7, D-91058 Erlangen, Germany
* Max-Planck-Institut fiir Quantenoptik, Hans-Kopfermann-str. 1, D-85748 Garching, Germany

E-mail: derekkorg@gmail.com

Keywords: nonlinear optics, quantum optics, optical parametric oscillators, quantum fluctuations

Abstract

Type I optical parametric oscillators are amongst the highest-quality sources of quantum-correlated
light. In particular, when pumped above threshold, such devices generate a pair of bright
orthogonally-polarized beams with strong continuous-variable entanglement. However, these
sources are of limited practical use, because the entangled beams emerge with different frequencies
and a diffusing phase difference. It has been proven that the use of an internal wave-plate coupling the
modes with orthogonal polarization is capable of locking the frequencies of the emerging beams to
half the pump frequency, as well as reducing the phase-difference diffusion, at the expense of reducing
the entanglement levels. In this work we characterize theoretically an alternative locking mechanism:
the injection of a laser at half the pump frequency. Apart from being less invasive, this method should
allow for an easier real-time experimental control. We show that such an injection is capable of
generating the desired phase locking between the emerging beams, while still allowing for large levels
of entanglement. Moreover, we find an additional region of the parameter space (at relatively large
injections) where a mode with well defined polarization is in a highly amplitude-squeezed state.

1. Introduction

Optical parametric oscillators (OPOs) are optical cavities containing a crystal with second order nonlinearity.
When pumped with a laser at frequency 2wy, these are able to generate beams at frequecies ws (signal) and w;
(idler) such that wy + w; = 2wy, through the nonlinear process known as parametric down conversion [1, 2].
Classically, the generation of the down-converted field requires the nonlinear gain to compensate for the cavity
losses, what means that the OPO has to be pumped above a certain threshold power in order for signal and idler
to start oscillating inside the cavity [1, 2]. Quantum mechanically, on the other hand, down-converted pairs are
generated even below the classical threshold, what confers the signal and idler fields with very interesting
quantum correlations [3].

In particular, type I OPOs, in which both signal and idler are linearly polarized along the same direction,
hold the record for quadrature noise reduction or single-mode squeezing (97% below vacuum fluctuations in
[4], see also [5-9] for previous experiments achieving more than 90% of noise reduction); this is manifested in
the mode at the degenerate frequency w ; = w; = wy, but squeezing is large only when working close to
threshold [10]. As for the applications of this quantum-correlated light source, on one hand, squeezed light is a
basic resource in the field of high-precission measurements, helping overcome the standard quantum limit
imposed by vacuum fluctuations [11-14]. On the other hand, mixing the output of two single-mode squeezers
on abeam splitter, one can obtain a pair of entangled beams (in the continuous-variable, Einstein—Podolsky—
Rosen sense [15]), what makes these devices a basic resource also for continuous-variable quantum information
protocols [16—18]; however, this method for the generation of entanglement requires the nonlinear cavities to be
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precisely locked to generate indistinguishable down-converted fields whose squeezing occurs in two orthogonal
quadratures, which introduces one level of complexity.

Ofmore interest for our current work are type II OPOs, that is, OPOs in which signal and idler have
orthogonal polarizations (one following the extraordinary crystal axis, and the other one the ordinary), making
the down conversion intrinsically nondegenerate [ 1, 2]. Just as the degenerate OPQ, there is an observable which
shows large squeezing levels only close to threshold, which in this case corresponds to the sum of the phases of
signal and idler; in other words, close to threshold, type Il OPOs show signal-idler phase anticorrelations beyond
the standard quantum limit [19-21]. But nondegenerate OPOs have one more interesting property: they are
invariant under changes of the signal-idler phase difference, what means that quantum noise is able to act on this
variable without bounds, making it diffuse and eventually completely undetermined (in the quantum
mechanical sense) [2, 19, 22-25]. But, invoking now the Heisenberg principle, a completely undetermined phase
difference between signal and idler allows for complete noise reduction in their intensisty difference (its
canonically conjugate variable); indeed, signal and idler become twin beams above threshold, that is, their
amplitudes are perfectly correlated [22, 26, 27]. Hence, nondegenerate OPOs show (ideally) perfect amplitude
correlations at any pumping level above threshold, and large phase anti-correlations close to threshold, which
means that close to this point they should be in a high-quality continuous-variable entangled state [2, 20, 21, 23].
From a quantum optics perspective, this means that below threshold OPOs should emit a two-mode squeezed
vacuum state, while above threshold OPOs would emit a displaced one (a ‘bright’ EPR state).

However, there are two issues that make above-threshold type Il OPOs not practical as EPR sources,
specially from a detection point of view. First, the phase-matching conditions ensuring that it is the frequency
degenerate process the one with larger gain (lowest threshold) are quite critical, and hence, signal and idler will
have different frequencies in general; for example, in the case of [28], where the authors are able to make the
frequency difference between signal and idler as small as 150 kHz for a cavity with 8 GHz free spectral range and
6 MHz linewidth, variations of the cavity length on the order of the nanometer can make the oscillation
frequencies jump to frequencies separated by several times the free spectral range (mode hopping); second, the
signal-idler phase difference is chosen at random at any realization and diffuses with time (rather fast close to
threshold), making it virtually impossible to capture the squeezed quadratures in a balanced homodyne
detection scheme. Hence, additional signal-idler phase locking techniques are required.

The pioneering example of such locking techniques was introduced in [29—-31]. Their idea consisted in
embedding in the cavitya \ /4 plate with its fast axis misaligned with respect to the extraordinary axis of the
nonlinear crystal. The plate introduces a coupling between the signal and idler modes which breaks the phase
invariance of the OPO, and it was then shown in [29] that in a given region of the parameter space (in particular
of the detunings) the frequencies of signal and idler get locked to wy; this OPO is known as the self-phase-locked
OPO, and was already demonstrated experimentally in [31]. Note that, as mentioned, this self-locking effect is
accomplished by breaking the phase symmetry of the OPO, and hence, one should expect a degradation of the
signal-idler intensity correlations, or, equivalently, of the noncritical squeezing induced by spontaneous
polarization symmetry breaking described in [32]. For example, in [31] the intensity-difference fluctuations
showed 89% quantum noise reduction prior to the introduction of the plate, while after obtaining frequency
degeneracy through the self-phase-locking mechanism this value fell down to a more humble 65%.

In the present article we study an alternative locking mechanism which consists in the injection of a laser
signal at frequency degeneracy wy, what is less invasive and more controllable at real time than the introduction
ofa \/4 wave plate; we will call actively-phase-locked OPO to such OPO configuration. We show how locking of
the signal and idler frequencies to the subharmonic wy can be achieved, while still obtaining large entanglement
levels. This locking technique is reminiscent of our previous work in frequency-degenerate type  OPOs tuned to
the first family of transverse modes [2, 24, 25, 33—35], in which we proposed injecting a TEM;, mode at the
subharmonic to lock the phase difference between the down-converted modes with opposite orbital angular
momentum [34].

The article is organized as follows. In the next section we introduce our OPO model, providing the set of
stochastic equations within the positive P representation which will allow us to study both its classical and
quantum dynamics in detail. Particularizing to a configuration that we will denote by ‘symmetric’, next we find
the classical phase diagram of the system analytically, showing the regimes where frequency locking is expected
to appear. Still within this symmetric configuration, we then provide analytical expressions for the quantum
correlations of the system, putting special emphasis on the level of signal-idler entanglement at the locking
points. In the section before the conclusions, we move out of the symmetric configuration, which is quite
challenging to achieve in real experiments, and perform a numerical study that proves all the analytic
conclusions of the symmetric case to hold also in this case.
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Figure 1. Resonance scheme of the type Il OPO considered in this work. The birefringence of the crystal breaks the degeneracy
between the modes with ordinary and extraordinary polarization, which experience different refractive indices (here, for definiteness,
we assume larger index along the extraordinary axis, the so-called positive uniaxial crystals [ 1]). We show the pump resonance at
frequency 2wy, and three resonances around the subharmonic wy, two of which overlap at that frequency and correspond to the signal
and idler down-converted modes.

2. Model for the actively-phase-locked OPO

We consider an optical cavity with a thin y® nonlinear crystal at its center (z = 0), where the electric field
operator at the relevant frequencies can be approximately written as [2]

Ei(r,, 1) = iEjgje /M aje ¥ 4 H.c.. (1)

The index j takes the values ‘p’, s’ and I’ for pump, signal, and idler, respectively (ws = wj = wo = wp/2). The

single-photon field amplitudes are E; = |/ /aw; / meoniL; sz for aring cavity, where n;, Lj, wj, and € are,
respectively, crystal’s refractive index, optical cavity length, transverse spot size at the cavity waist, and
polarization of the corresponding mode. For a Fabry—Perot cavity the single-photon field amplitudes have an
extra +/2 factor. r, = (x, ) is the transverse coordinate vector, with r = |r| |, and we have assumed there are
TEM, transverse modes resonating at the three relevant frequencies, giving rise to the simple Gaussian
transverse profile of the expression. We work in a picture rotating at frequency 2wy for the pump, and wy for
signal and idler. The annihilation (4;) and creation (&]T) operators satisfy canonical commutation

relations [4;, ﬁf] = .

The resonance scheme and polarization of the fields are sketched in figure 1: the pump is polarized along the
ordinary axis of the crystal and resonates at frequency 2wy, while, by convention, signal and idler are polarized
within the ordinary and extraordinary axis, respectively, and resonate at frequencies wy + &, with | ;| smaller
or on the order of their cavity linewidth ~, = ~;, taken equal for signal and idler for simplicity. Apart from
pumping the cavity with a laser at frequency 2w, with ordinary polarization, we inject an external laser field (in
phase with the pump drive) at the degenerate frequency wy with polarization g, = e~i%e, cos p, + ei®e,sin ¢,
where e, and e, are unit vectors following, respectively, the ordinary and extraordinary axes of the crystal.
Including cavity losses through the usual Lindblad terms, the master equation governing the evolution of the
state of the system reads [2, 36, 37]

4 _ Ly oy S yapal — atap — pala; )
g ib At 2, iaipa; = agaip pa; aj), (2)
j=psi

in the aforementioned rotating picture where the Hamiltonian can be written as H = Hy + Hppe + I:Iinj, with

Hy = 76.4] 4 + 76,4, a;, (3a)
Hppe = iy (apalal — a)asa), (3b)
Hy= Y in(&a] — ETay. (30)

j=p>sii

In this expression, the down-conversion rate  is proportional to the crystal’s nonlinear susceptibility, and the
damping rates are related to the (intensity) transmisivities of the mirror at the corresponding frequency, 7;, by
v; &~ ¢T;/4L; for Fabry—Perot cavitiesand ~; ~ ¢7; /2L; for ring cavities. In addition, the injection parameters
can be approximately written in terms of the power P; of the injected lasers at frequencies 2w, and wy as

Ep = W Pouwy [ frwos E = |27, Ry, [Ty e % cos py,and & = /27, P, /7w, e sin @, where we have taken the

phase of the driving lasers as a reference.
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In order to get analytical insight, and following previous works [24, 25, 34, 35], we map this master equation
into a set of stochastic Langevin equations by using the positive P phase-space representation [38]. Thisisa
procedure by which an independent complex stochastic variable is associated to each bosonic operator, that is,
{a, ozj+ Ji=p.si to{d;, a ]T }i=p.s.i- Quantum expectation values of any operator are then obtained as stochastic
averages by replacing the bosonic operators by their corresponding stochastic variable in the normally-ordered
version of the operator. In contrast to phase-space methods (such as the Wigner representation) that do not
require enlarging the phase space of the bosonic modes, the positive P representation allows for an exact
mapping between the master equation and a set of stochastic equations with a minimal extension of the phase
space (it only doubles it). In particular, it is not difficult to show [2] that the stochastic Langevin equations
associated with the master equation (2) read (the overdot denotes derivative with respect to time)

Qp = Ep — Ppp — Xy (4a)

dy =& — pay — xog o, (4b)

dg = & — (% + i6) s + xpai” + X E®), (40)
o =& — (% — i6)af + xapai + | xa, £7(), (4d)
di = & — (% + i6)ai + xapay + xa, £, (4¢)
& = & — (% — i6)af + xajas + xay 70, (4f)

where we have defined independent complex Gaussian noises & (t) and £ () , with zero mean, and only non-
zero two-time correlators

(E@EN)) = (EFWETHEN) = 6(t — 1. (5)

In order to reduce the number of parameters of the problem, we now make some variable changes; in
particular, we redefine time as 7 = ~t, the coherent amplitudes as

Bp=Xap  Bu= ——ay;exp(=if) ©
Vs \/WS/YP

and the noises as

N = e, ) = et %)

which satisfy the statistical properties (5), but now with respect to the dimensionless time 7. In terms of these
new variables, the Langevin equations read

Bp = k(0 — By — BuB)s (8)
By = k(o — By — BIB, (8b)
Bo=e — (1 +1A) B + BpBi + g/Bpn(0), (8¢c)
Bl =& — (1 —iA)BT + BE: + gy By (D), (8d)
Bi=a — (L +iA)Gi + BpBy + g \Bpn*(7), (8¢)
Bi=e — (1L — i) + 818, + g B (), (8f)
where we have defined the parameters

P V. R TN R P e ©)

Y %Y % % N

Note that this Langevin system is independent of 6, and hence, the physics is only sensitive to the parameter ¢,
of the injection’s polarization.

In order to get some analytic insight, in the rest of the article (with the exception of the last section) we are
going to simplify the problem to what we will call symmetric configuration of the actively-phase-locked OPO: we
assume the detunings to be opposite, thatis, Ay = —A; = A > 0, and inject with ¢, = 7 /4 (arbitrary
polarization ellipse along the +45° axis), so that signal and idler get equally pumped, &, = & = JP.
Furthermore, we consider the £ > 1limit in which the pump can be adiabatically eliminated (ﬂp = [3; = 0in
the previous equations). Taking all these considerations into account, we can reduce our model equation (8) to

By =P — (1 +i0)B, + BB + gyfBpn(), (10a)

4
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B =P — (=i + BB+ g By ), (100)
Bi= P — (1 — iD)Bi + BBt + gBp(7), (100)
B = VP — (1 +id)BF + By B+ gy By 1), (10d)

with B, = 0 — B,fand 3, = o — 5757

These are the final equations that will model quantum mechanically our system in the remaining of the
paper. In this work we are interested in the quantum properties of the down-converted field. In particular,
defining a polarization mode

gy = [eO0-De, 1 ei-De |/ 2, (11)

where we include in the definition the phase 6, of the injection beam for later convenience, with associated
annihilation operator

ag =[O~ Da, + 71002, /2, (12)

we will be interested in the noise spectrum associated to one of its quadratures

o

Xy = e + eay, (13)
which can be obtained as [2]
A 2 . +00 A 2, 5 /
V‘mt(X:; Q) =1+ — lim dr/ (6x) (T)bx) (T + ') e 17, (14)
g T—00 Y —00

where (2 is the so-called noise frequency (normalized to ), and x; = e 3y + ¢! is the stochastic variable
accounting for the quadrature associated to the normalized stochastic amplitudes

Bo = (e B + €3 /2, (15a)

By = (€87 + e B /2. (15b)
We have also introduced the notation éx,;’ = x,” — (x,). This noise spectrum is the quantity usually measured
in ahomodyne detection of the field coming out of the cavity when the local oscillator matches the spatio-
temporal profile of the down-converted field, and has polarization €y and phase ¢ relative to the pump.
Quantum correlations are manifest whenever V (X; ); Q) < 1forsome value of the parameters, in which case we
say that quadrature }291/; is squeezed at noise frequency 2. Let us finally remark that in the following we will use
the common short-hand notations

At A U+T/2 Ah=0

=% k=% =1, (16)
and similarly for the normalized stochastic quadratures
W= = gy = a7

3. Classical behavior: frequency locking

Let us first analyze the classical behavior of the system, which will allow us to see the regions of the parameter
space where the signal and idler oscillation frequencies get locked. The classical limit can be retrieved by making
a coherent-state ansatz for all fields, whose amplitude plays the role of the (normalized) amplitude of the classical
electromagnetic fields. Within the positive P representation, this is equivalent to replacing the ‘plus’ amplitudes
by the corresponding complex-conjugate ones and setting the noises to zero, leading to

Bs= P — (1 +1i8)8, + (0 — BB BF, (18a)
Bi= P — (1 —id)G;i + (o — B:5) 3% (18b)

From the expression in equation (1), it is clear that oscillation frequency of the classical fields will be locked to the
injection frequency wy whenever this nonlinear system has a stationary solution. On the other hand, the
symmetry { 3, — 3%, B; — 3%} of these equations suggests looking for stationary solutions of the type

Bo= B = VT explig). (19)
In the remaining of this section we study the conditions under which this type of solutions exist and are stable.

First, it is straightforward to show from (18) that the intensity I of this symmetric solution satisfies the third
order polynomial
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Figure 2. Bifurcation diagrams of the system. The value A = 0.6 is chosen for all the figures (the same behavior is found for any other
choice), while we set 0 to 0.5 in (a), 1.98 in (b), 2.09 in (c), and 2.8 in (d). The black lines correspond to the intensity I of the stationary
symmetric solution (19), their solid or dashed character meaning that this solution is stable or unstable, respectively. As explained in the
text, for 0 > 1itis possible to find periodic solutions connecting the P = 0 axis with the stationary branch (at the Hopf bifurcation,
marked as HB, for o < 1 + 2A or the upper turning point otherwise). We have checked numerically that these periodic orbits exist, and
moreover they are ‘symmetric’, thatis, 3;(7) = 37(7). The gray circles correspond in this case to the mean value of | 3,(7) |? (half the
sum between its maximum and its minimum of oscillation). On the other hand, for relatively large injections there is always a Pitchfork
bifurcation in which the symmetric stationary solution becomes unstable in favor of another stationary but asymmetric solution. The
insets show simply a zoom of the main figures at low injections.

P=I[I+1~-0)+ NI,

(20)

with its phase ¢ uniquely determined from I'as ¢ = arg{I + 1 — ¢ — iA}. Depending on the parameters, this
polynomial can have one or three positive definite solutions (see figure 2); by solving the equation 9P/0I = 0, it
is simple to show that the turning points I have the expression

2 1
L=2(0—-1+ = — 1?2 —-3A
+ 3(0 ) 3 (-1

(e2)

and hence, they existonly foro > 1 + J3A.Foro < 1 + /3 A the solution is therefore single valued.
In order to analyze the stability of this symmetric solution, we will change to a new polarization basis

€p = €, and g9 = €7/,

(22)

where ey, corresponds to the polarization mode excited by the symmetric solution (19) and &4 to its orthogonal,
that is, to what we will call the bright and dark modes of the system, as we did in previous works [2, 24, 25, 32-35].
In terms of the signal and idler modes, the corresponding normalized amplitudes are given by

By = (€76, + €¥B;) /N2 and B4 = i(e ¥f, — €'¥;) //2,and satisfy the evolution equations

6
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2 2

By = 2P cosp — By — ABa + (U - % - %]5?; (23a)
2 2

By =2Psing — Bg + ABy + (U - % - %)5?- (23b)

In this new basis the symmetric solution (19) 3,; = ~/T exp(&iy)simplyreads {3, = ~/2I, B3 = 0} and its
associated stability matrix is

—-1-21 -1 -=A 0
c—I1 —1-2I 0 —A
A 0 -1 o—-1If
0 A oc—1 -1

L= (24)

The characteristic polynomial of this stability matrix can be factorized into two second-order polynomials,
namely P{(A\) = (A + 1 + 0)> + A — I?and Py(\) = (A + 1 — o + 2I)? + A2 — T2 Thebifurcation
diagrams for the different parameter regions are shown in figure 2; now we discuss them in length.

Let us start by studying the instabilities predicted by the first polynomial, whose roots are given by

Moo= -1 +0)+ V2 - A (25)
The condition Re{\},} = 0 can only be satisfied for

1= ﬂ(l + 0')2 + N = IPB- (26)

The fact that the instability appears without imaginary part in A, and it is located in the upper branch of the
S-shaped curve (Ipg > I for any value of the parameters), signals that it corresponds to a pitchfork or static
bifurcation where an asymmetric stationary solution with | 3,| = || borns (as we have checked numerically).
This bifurcation is similar to the one introduced in [34], where we studied the effects of a signal injection in the
two-transverse-mode DOPO, and can be understood as a switching on of the dark mode. However, note that in
this case the fluctuations of the bright and dark modes are not decoupled below threshold, see the linear stability
matrix (24), what physically means that the quantum properties of the dark mode at the bifurcation will be
different from those of the dark mode in [34], and hence no perfect squeezing is likely to be found, as we show
later.

As for the second polynomial, its roots are given by

M =g -1 -2+ V12— A, (27)

Note that Al = 0 for I = I, thatis, the turning points of the S-shaped curve correspond to bifurcation points,
as must be. Itis then simple to check (for example numerically) that the whole middle branch connecting this
instability points is unstable, a characteristic trade of intensity-bistable systems (see figures 2(c), (d)).

But A\ has yet one more instability when

o—1
2

provided1 < o < 1 + 2A. Atthis instability the eigenvalues become purely imaginary, in particular,
M = +iwyg with wyg = /A* — (0 — 1)2/4, and hence it corresponds to a Hopf bifurcation. It is simple to
check that Iy is always below Ipg and I_; in particular, itisbornatI = 0for o0 = 1, and climbs the P-I curve as
oincreases untilitdiesat I = I_for o = 1 + 2A (see figures 2(b)—(d)). The portion of the curve with I < Iygis
unstable, and no stationary solutions can be found there, as the stable states correspond in this case to periodic
orbits (as we have checked numerically, see figures 2(b)—(d)). This is also quite intuitive because, when no
injection is present (P = 0), we know that the stable states of the OPO above threshold are the ones with the
signal and idler beams oscillating at the nondegenerate frequencies wy & -, which in the picture we are working
onmeans (1) x exp(—iA7)and F;(7) < exp(IAT).

This analysis proves that there exist regions in the parameter space where the frequencies of the signal and
idler beams are locked to the degenerate one, and hence active locking can be a good alternative to the self-
locking technique already proposed for type Il OPOs [29-31].

I =

= Iy, (28)

4. Quantum properties

As explained in the introduction, in the absence of subharmonic injection (P = 0), it is well known that there is
perfect entanglement between the signal and idler modes for ¢ = 1 within the linearized description; above this
threshold, the entanglement level is degraded (although perfect amplitude correlations persist), and the signal
and idler fields start oscillating at different frequencies. Our main intention with the injection was to lock these
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frequencies to the degenerate one, wy, which should contribute to make the observation and use of their
entanglement simpler, since we will show the entanglement to be equivalent to squeezing in a couple of modes
with well defined frequency and orthogonal polarization. We expect the presence of the injection to degrade the
entanglement level, since it breaks the phase invariance of the OPO, and in this section we are going to evaluate
how fragile the entanglement is to this injection, proving that large entanglement can still be attained.

In order to analyze the quantum properties of the system, let us first move again to the basis defined by the
bright and dark modes, €, = €,and &4 = €,_». The stochastic amplitudes associated to these modes satisfy
the Langevin equations

By = V2P cosp — By — ABa + BB + g Bpn(), (290)
By = 2P cosp — Bf — ABT + By By + 8y By mi (D) (29b)
Ba= 2P sing — Ba+ ABy + BpBi + g Bpma (D), (290)
B = V2P sing — B + ABY + By Ba+ gy By m (D), (29d)
where 3, = o — (83 + 6)/2, B, = 0 — (5* + B4 /2,and
ny(7) = %[e’”n(r) G (30a)
na(r) = %[e‘i*’n(ﬂ — e, (308)
nir) = %[e%ﬁ(r) + e, (300)
o = —%[e“’n*(ﬂ — ), (30d)

behave as real independent white Gaussian noises, that is, defining i (7) = col[n, (1), nb+(T), 74(7), 77:(7')], we
have

(7)) = 66(r — 7). (31

Next, we expand the amplitudes as 3, = <2 + by, 3¢ = V2I + by, B3 = bg,and B = bi,and
linearize the equations to first order in the fluctuations and noises, obtaining the linear system

b= Lb + gJo — In(7), (32)

where b = col(by, by, by, bi). Inappendix A.1 we solve this linear problem by finding the eigensystem
associated to the linear stability matrix £, from which we can evaluate any noise spectrum we want.

4.1. Entanglement and squeezing at the locking point

Let us now analyze the entanglement at the locking point. For 1 < o < 1 + 2A the Hopfbifurcation is the
natural locking point, since it is the point with which the periodic orbits connect with the stationary solution as
the injection parameter P is increased (see figures 2(b), (c)). On the other hand, for o > 1 + 2A the Hopf
bifurcation ceases to exist, and the periodic orbits connect directly with the upper turning point (see figure 2(d)).
In both cases, the method used to solve the linear problem in appendix A.1 shows that optimal noise reduction
appears in the €, /4 polarization modes, which is consistent with the fact that the solutions around the locking
point are symmetric in the sense of equation (19). The corresponding noise spectra are found to be

Vom(zpiﬂ'/% Q) =1- fi(l + 0)) (33&1)
VoUurRosns =1+ f.QI+1— o), (33b)

where

40 — DII £ A)? + 22 + Q2]

i) = N P12 42— N+ 2R+ Qb

(34)

As we show below, these equations predict squeezing in the fpiﬂ /4 quadratures.

Before analyzing in detail the squeezing levels that can be derived from these expressions at the locking
points, it is interesting to understand their connection to entanglement. It is simple to check that the following
relations hold:

Xotm/4 = (x5¢+ﬂ/4 + xi—lp—ﬂ'/4)/ﬁ’ (35a)

Voomja = & — 727 2 (35b)
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Figure 3. Noise spectra at zero frequency for the ¥ quadrature of the €y /4 modes at the Hopf bifurcation (up) and the upper
turning point (down), as a function of the pump parameter o. Three values of A are considered: 0.2 (solid blue), 0.14 (dashed red), and
0.025 (dotted-dashed yellow), the last one corresponding to the value obtained in [28].

Yoimps = GETT 4+ y727h V2, (350)

N

Xpompa = (y 97T — y#tY 2, (35d)

1

which show that squeezing in the quadratures of the &, » /4 modes imply quantum correlations between the
quadratures of signal and idler. Indeed, whenever the condition

04 P adl Al
Vout(XS ﬁXl ; Q) + VOU'[(%; Q) <2, (36)

is satisfied for some phases ¢, and ¢, it implies that the state of signal and idler is not separable [18, 39, 40],
which in our case is achieved because the quadratures Y’Wﬁ /4 are squeeezed, as we show next.

Let us first point out that equation (334) predicts maximum squeezing at zero noise frequency (2 = 0), both
for the Hopf bifurcation and the upper turning point. In the case of the Hopf bifurcation, the noise spectra at
zero frequency take the particular form

8(1 + a)[(3 + 0)? + 2(c £ A)? +2(1 F A)?]

Vout ?h . =1 s 37a
ip (a4 [ + 0)(1 + 30) + 4AP (37a)
N B+ 0)2 + 4N £ 4A (0 — 1)
VE Xoir/a) = . 37b
i (Xpr/4) (0 — 1+ 247 70)
On the other hand, in the case of the upper turning point the corresponding expressions read
& 4(0 — I)II £ AP + (1 + 0)’]
Vout Y - =1 38a
2 (Yonsa) -+ 1+ (38a)
VO (Kpnya) = +00. (38b)

Note that all these expressions predict squeezing in the Y quadratures of the €,+x/4 Modes; now, taking into
account that the mean field value of these modes is 3,1 /4 = JI € R, this corresponds to phase-squeezing. In
practical terms, this means that, in order to capture the optimal noise reduction, homodyne detection must be
performed with a local oscillator whose phase differs by 7 /2 from the one of the pump field.

In figure 3 we show the noise spectrum at zero frequency of these squeezed quadratures }A{pi,r /4 evaluated in
the aforementioned critical points as a function of the pump injection o, and for three different values of the
detuning A. Note that large levels of squeezing are obtained in the Hopf bifurcation even when working up to
44% above threshold (02 = 1.44).

Let us finally point out an interesting property of the noise spectra (33) evaluated at the Hopf bifurcation. Itis
simple to show that, as usual in these type of bifurcations, maximum antisqueezing is found at the Hopf
frequency, that s, Vo (Xviﬁ /45 wyp) = 0o. However, in contrast to many other nonlinear quantum optical
systems, maximum squeezing is not found at the Hopf frequency but at zero noise frequency.
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Figure 4. Noise spectra at zero frequency for the X quadrature of the €,,_ . polarization modes at the pitchfork bifurcation, for the
same values of A as in the previous figure. Note that the mode &, has large amplitude squeezing for any detuning, while the mode

€4y, does not have too much squeezing and is basically independent of the detuning.

4.2. Squeezing at the pitchfork bifurcation
Another interesting point is the pitchfork bifurcation in which the symmetric solution disappears in favor of
another stationary, asymmetric solution, see figure 2. As we already pointed out, in contrast to the injected two-
transverse-mode DOPO [34], we expect perfect squeezing not to appear at this bifurcation, because the
fluctuations of the dark mode are not decoupled from those of the bright mode below the corresponding
threshold. Nevertheless, we prove in this section that large squeezing levels are still attainable.

The first thing to note in this case is that the method we use to solve the linearized equations (32) shows that,
at the pitchfork bifurcation, optimal squeezing noise reduction appears in the polarization basis €, , where

T 7r/4 +arg{l — A+ VI? — A +i(I — A + JI? — A?)}. While it seems difficult to understand the
physical origin of these phases, we are convinced that it is rooted in the fact that the solution above this
bifurcation is not symmetric anymore in the sense of equations (19). As shown in appendix A.1, in this basis we
get the zero-noise-frequency noise spectra (again, squeezing is optimal at 2 = 0)

N 1
Vg Xpp) =1 - ———, (39a)
IPB — 0
Ve (Yp-y) = +o0, (39b)
o g — 0o
VOl X)) =1 — ———— 39¢
PB( ® l+) (1+IPB)2 ( )
5 g — o
VoY, ) =1+ 27 (39d)
e (o + 1)?

In this case the Y quadrature of the €,— modeis perfectly antisqueezed; its complementary, the X quadrature
of the same mode, is not perfectly squeezed, but it shows very high noise reduction, as shown in figure 4(a). On
the other hand, the Ep—y polarization mode shows also noise reduction in its X quadrature, although the
squeezing levels are quite modest in this case, see figure 4(b).

We can understand much better the dependence of these spectra on the parameters by performing
expansions to the leading order in the detuning (note in particular that the one corresponding to the £, is
independent of the detuning):

o A
Vo KXoy ) ® ——, (40a)
PR Ao 20 + 1)
R 1
Vst X, ) 1l — ———. 400
PB ( [ Lur) (a + 2)2 ( )

Note finally that, in this polarization basis, the steady-state solution reads BQ,L@& = /2Ipg cos )y € R, and
hence, in this case the squeezed quadrature is aligned with the phase of the classical solution (amplitude

10



I0OP Publishing New J. Phys. 20 (2018) 023004 J Ruiz-Rivas et al

1 105 1.1 115 12 125 1.3 135

Figure 5. Logarithmic negativity (Ey) as a function of the pump parameter o at the Hopf bifurcation, which corresponds to the
minimum value of the injection P for which the oscillation frequencies of signal and idler get locked. The solid curves correspond to
the analytical solution that we found for the symmetric case within the linearized theory, while the markers are found numerically for
the asymmetric example detailed in the text. Three values of A have been chosen, coinciding with the ones in the previous figures: 0.2
(solid blue, squares), 0.14 (dashed red, triangles) and 0.025 (dashed-dotted yellow, circles).

squeezing), contrary to what happens at the locking points. In practical terms, now this means that the local
oscillator must be in phase with the pump to observe optimal noise reduction.

5. Beyond the symmetric case

In order to get analytical insight, in the previous sections we have focused in the case in which signal and idler are
detuned symmetrically with respect to the subharmonic injection at frequency wy. In real experiments, however,
itis extremely challenging to meet such a symmetric configuration, since it requires unfeasible fine tuning.
Hence, in order for our locking method to be of use, it is important to study whether our predictions persist
when working out of such a symmetric situation, and this is what we prove in this section. The main difficulty
when working out of the symmetric configuration is that we do not have an analytic solution and stability
analysis to rely on, and hence, we need to resort to numerical tools. Using these, we will show though that the
Hopfinstability is still present in the asymmetric case, as well as large levels of entanglement between signal and
idler.

Our starting point is again the normalized equations in which the pump has been adiabatically eliminated,
equation (10), but allowing for general signal and idler detuning, which amounts to replace A by A in
equations (10a) and (100), and by — A in equations (10¢) and (10d). The first step consists in finding the classical
configuration of the system, what we do numerically in this case. In particular, we first check that even in this
asymmetric configuration, the classical version of this equations still possess a Hopf bifurcation above threshold
(o > 1). To thisaim, at a given value of the pump parameter o, we start from an injection P large enough so that
the system reaches a stationary solution [ ;, and then decrease the injection gradually until the real part of one of
the eigenvalues of the linear stability matrix gets as close to zero as we desire, checking that the imaginary part of
the eigenvalue is non-zero. This proves that the Hopf instability is still present in this asymmetric case, and,
moreover, we have checked that if we keep decreasing the injection, periodic orbits are found as the asymptotic
solution of the system. Hence, again we see that above threshold it is required a minimum value of the injection
to lock the signal and idler frequencies.

Once we have identified the Hopf bifurcation, which we remind it is the natural locking point of the system,
we compute its quantum properties by linearizing the Langevin equations, similarly to the symmetric case.
However, in this case we find the eigensystem of the linear stability matrix numerically for each parameter set. As
explained in detail in appendix A.2, from this eigensystem we can compute the output field’s spectral covariance
matrix in the signal /idler basis, and compute from it the logarithmic negativity quantifying the entanglement
between these two modes following standard Gaussian techniques [17, 18]. We provide all the details in
appendix A.2 as well, and here we just want to compare these levels to the ones obtained in the symmetric case.

We have made an exhaustive analysis of the logarithmic negativity as a function of the signal and idler
detunings, concluding that the entanglement properties of the system depend only on the distance between the
signal and idler resonances, and not on how they are disposed with respect to the frequency of the subharmonic
injection, which is a most important conclusion for experiments. This is shown in figure 5 for some selected
examples. In particular, we choose some distance between the signal and idler resonances, say 2A > 0, whichin
the symmetric case means A = —A; = A, whilewechoose A, = A + A/2and A; = —A + A/2asa
highly asymmetric example. In figure 5 we then plot the logarithmic negativity as a function of o for different
values of A. Remarkably, we can see that, not only the entanglement levels are also high in the asymmetric case,
but they coincide within the numerical accuracy with the ones of the symmetric case.
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6. Conclusion

In this work we have put forward a method to obtain exact frequency degeneracy in type Il OPOs, which is based
on the injection of a laser field at half the frequency of the pump laser. We have studied the impact that such
subharmonic injection has on the entanglement generated on the down-converted fields, proving that large
quantum correlations are still present at the locking region. Hence, this technique offers an easily tunable
alternative to more invasive techniques which require the introduction of additional optical elements in the
cavity. Apart from large levels of entanglement at the locking bifurcation, we have also identified an additional
(static) instability where a high level of amplitude squeezing is obtained.

Let us remark that we have also analyzed the case in which the subharmonic injection is not in phase with the
pump beam (amplification regime), but is phase-shifted by 7 /2 (attenuation regime), finding similar results
that will be shown elsewhere.

Finally, we find it relevant to point out the relation of our work to the field of synchronization, which has
received a lot of attention lately in the context of modern quantum-optical platforms [41—63]. In the regime of
interest to our work, synchronization between the signal and idler modes occurs only at the classical level [64],
but it has a strong influence on how quantum fluctuations are distributed around such synchronized classical
states. An interesting future venue may consist on studying the limits that quantum mechanics impose to signal-
idler synchronization, or considering deeper quantum regimes of the system where signatures of quantum
synchronization could arise.
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Appendix. Manipulating the linearized Langevin equations

Our analysis of the quantum properties of the down-converted field was based on the linearized Langevin
equations. In this appendix we will show explicitly how we have dealt with these equations in order to obtain the
quantities of interest, both in the symmetric and asymmetric cases. Conceptually, the approach we use is the
same in the symmetric and asymmetric cases: we solve the linear system by making use of the eigensystem of the
stability matrix. However, in the symmetric case we will be able to find the eigensystem analytically, while in the
asymmetric case only numerically. Let us then start by commenting on some general aspects, and then
particularize to our problems at hand.

In general, the linearized Langevin equations can be written in the form

b = Lb + g/|3;l (7). (A1)

In this expression BP = 0 — f3,B;, bisavector containing the quantum fluctuations of the stochastic
amplitudes in the polarization basis that we choose to write the equations on, L is the corresponding linear
stability matrix, and we assume that the components of the noise vector obey the two-time correlators

N, (TN, (7)) = Spné (1 — 7'), with S some matrix.

Given this equation, we proceed by finding the left eigenvectors {u;};_1 ;34 defined by u}ﬁ =\ u}f or,
equivalently, LTu; = )\}kuj (note that they are defined as column vectors). The corresponding eigenvalues are
denoted by ;. Acting on equation (A.1) with u§ on the left, and defining the projections ¢;(7) = ;fb(T), we
obtain

¢ = Nicj + g415l u;n(r), (A.2)

which has the asymptotic (7 > —Re{\;}"! V) solution

¢(r) = g /1Bl j; " dreN T (e, (A3)
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leading to the asymptotic correlation functions

213 luf Sy
g |ﬂp|u]-8ul NE-T) s
c(Ma(rt)) = ————— x A4
(GMarh) = == X G L =
and ultimately to the asymptotic spectra
+00 . g2|5p|u75u*
Cy(2) = lim dr’e ¥ c; (e (T + 1)) = L, A5
H0) = T f_oo a0 = o — ) (43

which define a matrix C. The noise spectrum (14) of any quadrature, or even more complicated objects such as
the spectral covariance matrix in any polarization basis, can be evaluated by making a proper combination of
these spectra, as we will see shortly.

A.1. Symmetric configuration

In the case of the symmetric configuration, the linearized Langevin equations take the form (32) in the bright/
dark basis, leading to | Bpl = o — I, S = 1, where 1is the identity matrix, and a linear stability matrix £ given
by equation (24). In order to apply the general expressions above in this symmetric configuration, it is
convenient to analyze separately the cases I < Aand I > A, since £ becomes singularat I = A.

A.1.1. Eigensystem and noise spectrafor I < A. Inthe I < A case, the eigenvalues read
N=-1-0—iVA - 2, (A.6a)
N=-1-0+iJA -, (A.6b)
N=—14+0—20—iJA - 2, (A.6¢)

M=—1+0—20+ivN - I?, (A.6d)
with corresponding left eigenvectors
u = col(e19/2, —e710/2 ¢l0/2 _eid/2) (A.7a)
u, = col(el?/2, —el0/2 =10/2 _e=i0/2) (A.7D)
usz = col(e10/2) e710/2 ¢i®/2  (i0/2) (A.7¢)
uy = col(el?/2, ei¢/2 ¢=i0/2 o—id/2) (A.7d)

where ¢ = arg{I + ivA? — I?}.

Since the eigenvalues are complex, it is clear that the projections ¢j cannot be directly proportional to
observable quantities. However, one can easily show that simple combinations of them are indeed proportional
to the quadratures of the €, /4 polarization modes:

a+o=21+I/A 6)/@7#/4, (A.8a)
a—o=—-2J1 —I/A 6yw+ﬂ/4, (A.8D)
=21+ 1/Ab6xy_rs4 (A.8¢)

3 — €= ZiJm&xwﬁ/z;. (A.84)
Hence, we get the noise spectra
Cii(2) + Con() + Cau() + Cia()
2¢%(1 + I/A)
Ci(©) + Co() — Cn() — Cia()

VO (Y, 3 ) = 1 — , (A.9a)

VOU (Vs ryas ) =1+ , A.9b
Ypimsas £2) 2020 —1/A) (A.9b)
o C33(8)) + Caa(D) + C34()) + Cus()

VOu(R s ) =1+ , A9
Roonrai ) 2¢°(1 4+ 1/4) (459

VO R ) = 1 — C33(82) + Caa(§)) — C54() — C43(52). (A.9d)

2¢8°(1 = 1/4)
These spectra have actually fairly simple analytical expressions in terms of the system parameters, expressions

that we gave explicitly in equation (33) in the main text.

A.1.2. Eigensystem and noise spectrafor [ > A. Inthe I > A case, defining the functions E. = I+ I>— A? >0,
the left eigensystem of L is easily found to be
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u = col(F., —F;, A, —A), (A.10a)
u, = col(E, —F, A, —A), (A.10b)
u; = col(E,, F., A, A), (A.10¢)
uy = col(E, F, A, A), (A.10d)

with corresponding eigenvalues
N=-1-0-J1- A, (A.11a)
N=—1—0c+ P A, (A.11b)
M= 140202 — A2, (A.11¢)

M=—140—20+ 7 - A, (A.11d)

Let us define the amplitude and phase of E. + iA as My and 1) respectively, which can be written as
M, = 2I(I + V12 — A), (A.12a)
b= F O (A.12b)

with ) = arg{l — A + VI? = A + i(I — A + I? — A?)}.In this case the eigenvalues are real, and it is

therefore possible to find a relation between the projections and the quadratures of modes with polarization

699—1/&:
= JM, iéyw_%, (A.13a)
o= yM_iby, ,, (A.13b)
e = M, 0xypy,, (A.13¢)
cp = NM_bx,_y, (A.13d)
leading to the noise spectra
A 2 4(c — 1)
Vou(y, s Q) =1-— C() =1 — , (A.14a)
o g*M; (1+ 0+ NI2— A2)2 + 2
N 2 40 —-D
Voul(Y,_y; Q) =1 — Cn()=1-— , (A.14b)
o M- (1+o0— V12— )+ Q2
4(c — 1)
VourX, us ) =1+ —0Ca(Q) =1+ ) (A.14c)
o gM (1 — o+ 20+ VI? - N) + Q?
5 2 4 -1
Vom(X p—1 > Q) =14 C44(Q) =1+ . (Al4d)
o &M (I—o+2d—JP— Ny +

This expressions, particularized to {2 = 0 and the pitchfork bifurcation I = Ipg are the ones we gave in
equation (39).

In order to compare with the I < A case, it is also convenient to analyze the noise spectrain the .4 /4
polarization basis. For this, we now relate these mode’s quadratures modes with the projections ¢;. In particular,

itis easy to find
Jzixfl_+ - J]C\i[__ - 2(1 + %) 16— /a> (A.15a)
\/;/[1_+ a \/;T - 2(1 %) 1Y, /a0 (A.15b)
JIC\34_+ + \/}C\‘*T - 2(1 n %)5 X /i (A.15¢)
\/ZC\iI_+ - \/Ic\% 2(1 — %)&QHWM. (A.15d)

where the identities ~/2 cos 1) = /1 + A/I and /2 siny) = /1 — A/I are useful when checking this

relations. Hence, the noise spectrum of the corresponding quadratures can be written as

—1
Vo @) =1- lcu(m L Cal®) |, Ca@) + C12(Q)][g2(1 N %)] ’ .

M, M. MM
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(g o | CuE) | Ca @) Cu() + Cua(®) 2( _ g) B
\%4 (Ygo+7r/4> Q) 1 [ M+ + M W :||:g 1 I 5 (A.16b)

out (% L O C35(8)) | Caa(€) | Cag(§) + Cy3(£)) 2( é) !
VOl (Xy—zya ) = 1 +l M, + va + NaTe ][g 1+ ; , (A.16¢)

o C35()  Cu(Q)  Caa() + Cis(Q AT
VOt Xprys Q) = 1 +[ j\i) + ‘;\4/;7) - Gl —I)\LM“( )][gZ(l - 7)] : (A.16d)

Itis again easy to check that, in terms of the system parameters, these combinations read as given in
equation (33), and hence they coincide with the expressions found in the I > A case. This means that, even
though the eigensystems are very differentin the I > A and I < A cases, and furthermore the matrix £ cannot
be diagonalized in the I = A limit, this mathematical pathology is not present in the physical observables. This
is indeed characteristic of detuned nonlinear quantum-optical cavities.

A.2. Asymmetric configuration

In the case of the asymmetric configuration, we work in the signal /idler basis, where we find the classical
solution (3, ; numerically as explained in the text for each choice of parameters. In this case, we then have
b = col(bs, b, bi, b),

6s 0 _BsBi* a
0

(_)* _ A *_.
o T | (A17)
_ sﬁi o ®i 0
g _BsBi* 0 @:k
with ©,; = —1 — iAy; — |Bi? and
0 0 e 0
72 5
S—| 0 0 0 % (A.18)
e 0 0 0

0 e?% 0 0
with ¢, = arg{ fBp}. We find the eigensystem of £ numerically for each choice of the system parameters.

We can characterize the quantum state of the output field by the spectral covariance matrix. Collecting the
normalized stochastic quadratures of signal and idler in a vector r = (x;, > Xi> ¥,), this can be evaluated as

2 +o00 .
VO =1+ = [ drM@e (A.19)
g

where the elements of the normally-ordered two-time correlation matrix M are given by

My(r) = tim 08t = 7+ ontr = ) (A20)

—00 2

At the end of this section we explain how this two-mode covariance matrix allows for a characterization of the
entanglement between the signal and idler modes. But before that, let us show how we can compute it from the
solution that we found for the linearized problem, in particular from the spectral correlation matrix C(£2) of the
projections. Note that the relation between the quadrature fluctuations ér and the quantum fluctuations b can
be written in matrix form as 6r(7) = Rb(7) with

R = (_11 }) ® (_11 }) (A21)

while defining the vector of projections ¢ = col(¢, 6, ¢, ¢;) and the matrix of left-eigenvectors
U = col(uf, ul, uj, u}), we can write b(r) = U 'c(r). Hence, we see that we can write the quadrature-vector in
terms of the projection-vector as §r(7) = RU'c(7), leading to

V@) = 1+ SRUCQ) + CTOQIU TR (A22)
4

Let us remark that this expression can be efficiently evaluated numerically once we have identified the classical
stationary solution at the Hopf bifurcation, ; ;, from which we derive the linear stability matrix £, its
eigensystem, and from it &/~! as well as the spectral correlation matrix C(Q2). In the following we take 2 = 0 as
this is the value of the noise frequency that leads to the largest levels of entanglement in the symmetric case.
Having the covariance matrix, we are now ready to analyze the entanglement between the signal and idler
modes. In order to be numerically efficient, we choose to quantify the entanglement between these two modes
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via the logarithmic negativity, which is an entanglement monotone, albeit not a proper measure [18]. Since by
construction, the linearized approach generates a Gaussian state for the system, the logarithmic negativity can be
easily computed from the two-mode spectral covariance matrix by following standard techniques, see for
example [17, 18]. In particular, defining the partially-transposed spectral covariance matrix

~ A C
V=2V0)Z = ) A.23
©) ( & B) (A.23)
where Z = diag(1, 1, 1, —1), the logarithmic negativity takes the expression
logt; ;<1
En= —j; 0 5> (A.24)

where 77, are the symplectic eigenvalues associated to 1, which can be found from

< \/ﬁ
~i:Ai A2 4detV, (A.25)

with A = detA + detB + 2detC.
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