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Abstract: Nonlinear optical cavities are crucial both in classical and
quantum optics; in particular, nowadays optical parametric oscillators are
one of the most versatile and tunable sources of coherent light, as well as
the sources of the highest quality quantum-correlated light in the continuous
variable regime. Being nonlinear systems, they can be driven through
critical points in which a solution ceases to exist in favour of a new one,
and it is close to these points where quantum correlations are the strongest.
The simplest description of such systems consists in writing the quantum
fields as the classical part plus some quantum fluctuations, linearizing
then the dynamical equations with respect to the latter; however, such an
approach breaks down close to critical points, where it provides unphysical
predictions such as infinite photon numbers. On the other hand, techniques
going beyond the simple linear description become too complicated
especially regarding the evaluation of two-time correlators, which are of
major importance to compute observables outside the cavity. In this article
we provide a regularized linear description of nonlinear cavities, that is,
a linearization procedure yielding physical results, taking the degenerate
optical parametric oscillator as the guiding example. The method, which
we call self-consistent linearization, is shown to be equivalent to a general
Gaussian ansatz for the state of the system, and we compare its predictions
with those obtained with available exact (or quasi-exact) methods. Apart
from its operational value, we believe that our work is valuable also from
a fundamental point of view, especially in connection to the question of
how far linearized or Gaussian theories can be pushed to describe nonlinear
dissipative systems which have access to non-Gaussian states.
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1. Introduction

Nonlinear optical cavities, that is, cavities containing some element whose response to an ap-
plied optical field is nonlinear, are very important both in classical and quantum optics. In the
classical domain they allow for effects such as frequency conversion [1] or spatio-temporal pat-
tern formation [2], while in the quantum domain they allow for the generation of quantum cor-
relations manifesting as squeezing or entanglement [3], basic resources for modern applications
such as high-precission measurements [4–7] and quantum information communication and pro-
cessing [8, 9]. The paradigmatic example of such systems are degenerate optical parametric
oscillators (DOPOs); these consist in a resonator containing a crystal with second-order non-
linearity, which, when pumped with an external monochromatic laser, is able to generate pho-
tons at the subharmonic frequency through the process known as parametric down-conversion
(PDC). The interplay between the nonlinear parametric amplification and the cavity losses sets
a threshold power below which no subharmonic field is generated at the classical level, and it is
close to this critical point where quantum effects are the largest; in particular, more than 90%
of quadrature squeezing has been experimentally generated with such a system [10–13].

In order to analyze the quantum properties of these systems, the simplest and most widely
used technique consists in expanding the field as a classical part plus some quantum fluctua-
tions, and linearize the dynamical equations with respect to the latter [14, 15]; from another
(equivalent) point of view, this approximation means that the state is taken to be Gaussian, with
a mean coinciding with the classical field amplitude, and a covariance matrix accounting for the
quantum fluctuations. The problem with such approximation is that it gives unphysical predic-
tions such as perfect quadrature squeezing (which requires infinite energy) close to the critical
points of the classical theory [16].

Especially for DOPOs, people have developed more refined techniques which go beyond the
linear approximation, correcting this unphysical predictions for quantum correlations. Among
these techniques, the ones based on the positive P representation [17] are of especial relevance;
this representation allows for an exact mapping of the quantum dynamics onto a set of classical
stochastic equations from which a proper perturbation expansion or numerical simulation can
be carried even at the critical point [18–22]. Moreover, in the limit in which the pump dynamics
can be adiabatically eliminated, exact solutions to the steady-state positive P distribution of the
DOPO are known [14, 23, 24]. The DOPO dynamics close to the critical point has even been
analyzed via non-equilibrium many-body techniques such as the Keldysh formalism [25–27].

The problem with all these beyond-linear techniques is that they are quite complicated when
it comes to the evaluation of two-time correlation functions needed for predictions concerning
measurements outside the cavity, functions which, on the other hand, are straightforwardly
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evaluated within a linearized or Gaussian description. Motivated especially by this last fact, in
this work we offer a linear theory (or, equivalently, a Gaussian ansatz for the state of the sys-
tem) which regularizes the unphysical predictions offered by the usual linearization procedure.
Apart from applied or operational reasons, we believe that the method is relevant also from a
fundamental point of view, since it allows us to study how far linearized theories or Gaussian
ansatzes can be pushed to decribe nonlinear dissipative systems with intrinsic non-Gaussian
dynamics.

The article is organized as follows. In the next section we describe the quantum model for
DOPOs in the Schrödinger and Heisenberg pictures, using, respectively, the cavity modes’ mas-
ter equation and a set of quantum Langevin equations. Then, in Section 3 we introduce our
regularized self-consistent linearization procedure in the Heisenberg picture, to show in Sec-
tion 4 that it is completely equivalent to using a general Gaussian ansatz for the state in the
Schrödinger picture. In Section 5 we compare the quantum correlations (quadrature fluctua-
tions) obtained through this method with previous exact (or quasi-exact) methods, showing
that, despite its simplicity, it agrees with the latter not only qualitatively, but also quite well
quantitatively; comparision of our Gaussian ansatzes with the exact solution will give us the
opportunity to discuss some subtleties related to how spontaneous symmetry breaking works in
this kind of dissipative systems. In the last section we conclude and comment on other systems
where the method could be applied.

2. The DOPO model

We consider a cavity containing a χ(2)-crystal, pumped with a laser resonant with a cavity mode
at frequency 2ω0 (pump mode), such that photons can be down-converted inside the crystal to
the subharmonic resonance ω0 (signal mode). Denoting by âp and âs the annihilation oper-
ators for pump and signal photons, respectively, the (interaction picture) Hamiltonian which
describes such scenario is given by ĤDOPO = Ĥinj + ĤPDC [14–16], with

Ĥinj = ih̄Ep(â
†
p − âp), ĤPDC = ih̄

χ
2
(âpâ†2

s − â†
pâ2

s ), (1)

where Ep is proportional to the amplitude of the injected laser (whose phase is taken as a
reference for any other, what allows taking this parameter as real), and χ is proportional to
the nonlinear susceptibility of the crystal as well as the overlapping between the spatial modes
involved in the down-conversion process. In addition to these coherent processes, we need to
introduce the cavity losses; there are two different ways in which this can be done. In the
Schrödinger (interaction-)picture, in which the state of the system ρ̂ evolves while operators
are fixed, such irreversible processes are accounted for by extra terms in the master equation
as [24, 28]

dρ̂
dt

=

[
ĤDOPO

ih̄
, ρ̂
]
+ ∑

j=p,s
γ j(2â jρ̂ â†

j − â†
j â jρ̂ − ρ̂ â†

j â j), (2)

where the damping rates γ j are proportional to the transmissivity of the coupling mirror at the
corresponding frequency.

On the other hand, in the Heisenberg (interaction-)picture, the bosonic operators evolve ac-
cording to the quantum Langevin equations [24, 28]

dâp

dt
= Ep − γpâp − χ

2 â2
s +
√

2γpâp,in(t), (3)

dâs

dt
=−γsâs + χ âpâ†

s +
√

2γsâs,in(t),
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in which the input operators satisfy correlations

〈
â j,in(t)

〉
=
〈
â j,in(t)âl,in(t

′)
〉
= 0,

〈
â j,in(t)â

†
l,in(t

′)
〉
= δ jlδ (t − t ′), (4)

and account for the vacuum driving fields entering the cavity through the partially transmitting
mirror.

In the following we explain our regularized linearization of this nonlinear system in both
pictures, since they provide different intuitive ideas of what the procedure means.

3. Heisenberg picture approach: self-consistent linearization

Before explaining the procedure, let us define the following dimensionless parameters

σ = Epχ/γpγs, κ = γp/γs, g = χ/√γpγs, (5)

and normalized variables

τ = γst, b̂s = gâs, b̂p =
√

κgâp, b̂ j,in(τ) = γ−1/2
s â j,in(γ−1

s τ), (6)

in terms of which the quantum Langevin equations (3) are rewritten as

1
κ

db̂p

dτ
= σ − b̂p − 1

2 b̂2
s +

√
2gb̂p,in(τ), (7)

db̂s

dτ
=−b̂s + b̂pb̂†

s +
√

2gb̂s,in(τ);

note that the normalized input operators satisfy the correlations given in Eqs. (4) but now with
respect to the new dimensionless time τ .

In order to linearize these equations, we expand the annihilation operators as b̂ j = β j +δ b̂ j,
with β j some amplitudes which one identifies with the mean-field part of the modes 〈b̂ j〉, and
δ b̂ j the operators accounting for quantum fluctuations around such mean-field, with respect to
which the theory will be linearized. The mean-field amplitudes can be evaluated by taking the
quantum expectation value of the quantum Langevin equations (7), leading to

1
κ

dβp

dτ
= σ −βp − 1

2
β 2

s − 1
2
〈δ b̂2

s 〉, (8)

dβs

dτ
=−βs +βpβ ∗

s + 〈δ b̂pδ b̂†
s 〉.

In the usual approach, these mean-field equations are solved by assuming that the state is coher-
ent in all modes, hence neglecting the 〈δ b̂2

s 〉 and 〈δ b̂pδ b̂†
s 〉 terms, what gives rise to the classical

equations that would have been obtained from Maxwell’s equations; in other words, the mean-
field amplitudes β j are taken to be the classical solutions of the system [14,15]. In particular, in
the case of Eqs. (8), this coherent mean-field ansatz provides two different types of steady-state
solutions depending on the injection parameter σ (see the thin-solid light-grey curve of Figure
1): one known as the below-threshold solution with (β̄s = 0, β̄p = σ) which is the only stable
solution for σ ≤ 1, and another (bistable) solution for σ > 1 known as the above-threshold
solution with the signal field switched on (β̄s =±√

σ −1, β̄p = 1). The injection σ = 1 marks
a critical point where the below-threshold solution changes from stable to unstable, and, as we
argue below, this sudden change in the stability conditions is what generates unphysical pre-
dictions in the linear theory [14–16]. Note that the presence of two solutions with oposite sign
above threshold reflects the invariance of the model under the transformation âs →−âs, which
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the system spontaneously breaks when choosing one of the solutions according to the particular
random fluctuations upon which coherence is built on.

In order to correct the unphysical predictions at threshold, we propose to incorporate some
information of the quantum dynamics in the 〈δ b̂2

s 〉 and 〈δ b̂pδ b̂†
s 〉 terms of the mean-field equa-

tions (8), with the purpose of obtaining a better ansatz for the mean-field amplitudes. Con-
cretely, using Eqs. (8), the quantum Langevin equations are rewritten in terms of the fluctuations
δ b̂ j as

1
κ

dδ b̂p

dτ
= −δ b̂p − 1

2
βsδ b̂s − 1

2

(
δ b̂2

s −〈δ b̂2
s 〉
)
+
√

2gb̂p,in(τ), (9)

dδ b̂s

dτ
= −δ b̂s +βpδ b̂†

s +β ∗
s δ b̂p +

(
δ b̂pδ b̂†

s −〈δ b̂pδ b̂†
s 〉
)
+
√

2gb̂s,in(τ).

We can proceed then as in the regular linearization by neglecting the nonlinear fluctuations
δ b̂2

s −〈δ b̂2
s 〉 and δ b̂pδ b̂†

s −〈δ b̂pδ b̂†
s 〉, obtaining the linear system

d
dτ

δ b̂ = L (βs,βp)δ b̂+
√

2gb̂in(τ), (10)

with δ b̂ = col(δ b̂p,δ b̂†
p,δ b̂s,δ b̂†

s ), b̂in = col(κ b̂p,in,κ b̂†
p,in, b̂s,in, b̂

†
s,in), and where the so-called

linear stability matrix is defined as

L =

⎛
⎜⎜⎝

−κ 0 −κβs 0
0 −κ 0 −κβ ∗

s
β ∗

s 0 −1 βp

0 βs β ∗
p −1

⎞
⎟⎟⎠ ; (11)

the difference now is that, instead of substituting the classical solutions which give rise to a
singular stability matrix at threshold (what can be traced as the source of all the unphysical
predictions [29]), the mean-field amplitudes β j are left as unknown variables which are found
self-consistently by calculating the 〈δ b̂2

s 〉 and 〈δ b̂pδ b̂†
s 〉 terms from this linear system, and plug-

ging them into the mean-field equations (8). In this case, it is simple but lengthy, for example by
finding the (bi-orthonormal) eigensystem of the matrix L , to obtain the following steady-state
expressions for these correlators

lim
τ→∞

〈δ b̂2
s 〉 = −g2βp

[
Ip − (1+κ)(1+ Is)(1+κ + Is)

]
2
[
Ip − (1+κ)2

][
Ip − (1+ Is)2

] , (12)

lim
τ→∞

〈δ b̂pδ b̂†
s 〉 = − g2κβsIp(2+κ + Is)

2
[
Ip − (1+κ)2

][
Ip − (1+ Is)2

] ,

where we have introduced what we call the mean-field intensities Ij =
∣∣β j
∣∣2, complemented

with the phases ϕ j ∈R defined from β j =
√

I j exp(iϕ j). Introducing these expressions into the

mean-field equations (8) in the stationary limit (β̇ j = 0), we get

σ = β̄p +
1
2

β̄ 2
s +

g2β̄p
[
Īp − (1+κ)(1+ Īs)(1+κ + Īs)

]
4
[
Īp − (1+κ)2

][
Īp − (1+ Īs)2

] , (13)

β̄pβ̄ ∗
s =

(
1+

g2κ Īp(2+κ + Īs)

2
[
Īp − (1+κ)2

][
Īp − (1+ Īs)2

]
)

β̄s, (14)

where the bar denotes ‘steady-state values’.
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Fig. 1. Mean-field steady-state intensities of the pump (a) and signal (b) modes as a function
of the injection parameter σ . We have chosen κ = 1 and g = 0.01, but similar figures are
found for any other choice of these parameters. The thin-solid light-grey curve corresponds
to the usual linearized description, while the solid blue line and dashed-dotted red line
correspond to our self-consistent method below and above threshold, respectively. In (a)
the dashed yellow line corresponds to the predictions of Drummond and collaborators’
perturbative analysis [19, 20] (see Section 5), while in (b) it corresponds to the number
of (normalized) signal photons obtained from our self-consistent below-threshold solution,
showing how it is not divergent at threshold, in contrast with the predictions found with the
usual linearization approach.

It is then straightforward to show that the pump phase ϕ̄p is locked to 0, while the signal
phase ϕ̄s can take the values 0 or π , just as in the classical solution. As for the intensities, Eq.
(14) yields a third order polynomial in Is, with a trivial root Īs = 0 (below threshold solution)
and second root (above threshold solution) which can be written in terms of the pump intensity
as

Īs =

√
ĪpR(Īp)+κg2Īp

4
(√

Īp −1
)[

(1+κ)2 − Īp
] −1, (15)

with

R(Īp) =

{
4

(√
Īp −1

)[
(1+κ)2 − Īp

]−κ(1+κ)g4
}2

−κ2g4 [(1+κ)2 − Īp
]
; (16)

the third root is not relevant, since it can be checked that it leads to unphysical results, as
commented below. Finally, Eq. (13) gives an equation for the pump intensity, which can be
written as

σ =
1
2

Īs +
√

Īp

{
1+

g2

4
Īp − (1+κ)(1+ Īs)(1+κ + Īs)[
(1+κ)2 − Īp

][
Īp − (1+ Īs)2

]
}

; (17)

below threshold (Īs = 0), this gives a third order polynomial in
√

Īp whose roots can be found
analytically (although not much insight is gained from their complicated expression, so we
don’t give them explicitly), but above threshold it gives a high-order polynomial whose roots
we’ve only been able to find numerically. Of the many solutions for Īp obtained from this
equation, most of them are disregarded because they are either negative or complex, make
Īs in Eq. (15) negative or complex, or lead to negative photon numbers 〈â†

j â j〉 or quadrature

fluctuations incompatible with the Heisenberg uncertainty principle 〈δ x̂2
j〉〈δ ŷ2

j〉 ≥ 1 (see below
for a definition of the quadrature fluctuations). It is quite remarkable that, after discarding all
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these unphysical solutions, only two solutions for Īp remain: one of the three roots of the below-
threshold polynomial—Eq. (17) with Īs = 0—, and another one from the above threshold one—
Eq. (17) with Īs given by Eq. (15)—.

In Fig. 1 we plot the pump (a) and signal (b) intensities associated to these solutions as a
function of the injection; it is apparent that they tend to the classical solutions far away from
the critical point, but never reach, in particular, the value of the intensities that makes the lin-
ear stability matrix become singular (Īs = 0, Īp = 1). Hence, the solutions of our self-consistent
linearization can be seen as regularized versions of the classical below- and above-threshold
solutions, which remove the divergences of the linear theory of quantum fluctuations (see Sec-
tion 5 for and explicit discussion of the regularized quantum properties). The figures also allow
us to see the way in which this regularization occurs: in the case of the below-threshold solu-
tion (solid blue curves), the pump intensity does not grow quadratically with the injection as
happens with the classical solution (thin-solid light-grey curve), staying below its critical value
Ip = 1 for any physical value of the injection σ ; as for the above-threshold solution (dashed-
dotted red curve), instead of connecting continuously with the below-threshold solution as the
classical solution does, its appearance is delayed a little bit respect to the classical threshold
σ = 1, and starts with a nonzero signal intensity Is. It might seem strange that the above- and
below-threshold solutions do not connect continuously, but in Section 5 we will argue why the
presence or not of this ‘jump’ is quite irrelevant indeed, as can be intuitively understood from
the point of view of the symmetry breaking that occurs above threshold: too close to threshold
quantum tunneling between the solutions with opposite signal phase is too fast, and it makes
no sense to talk about these solutions independently.

Let us finally comment on one subtle point: while in the classical case the Īs = 0 solution
is discarded for σ > 1 based on stability arguments, the corresponding regularized solution
cannot. In particular, note that the stability of such solution depends not directly on σ , but on
the pump’s intensity Īp, see Eq. (11), becoming unstable whenever Īp > 1; now, in the usual
approach in which the mean-field equations are just the classical ones—Eqs. (8) neglecting the
〈δ b̂2

s 〉 and 〈δ b̂pδ b̂†
s 〉 terms—, what happens is that Īp = σ2, and hence, the condition Īp = 1

is equivalent to σ = 1, so that the solution with Īs = 0 can be regarded as a physical solution
only for σ ≤ 1. However, once the 〈δ b̂2

s 〉 and 〈δ b̂pδ b̂†
s 〉 terms are considered in Eqs. (8), the

equation for the pump intensity—Eq. (17) with Īs = 0—produces a solution Īp which is no
longer proportional to σ2, and, in particular, is below 1 no matter how much we increase σ—
see Fig. 1(a) and the discussion above—; hence, this means that the solution with Īs = 0 cannot
be disregarded based on stability arguments, and it is therefore a decission of the ‘user’ when to
(and if) stop trusting it. Although we dicuss this point in more length and generality in Section
5, let us anticipate here that the exact solution available in the κ → ∞ shows that whenever the
solution with Īs �= 0 appears, this is the one that one should consider, since it adapts better to
the problem.

In summary, in this section we have provided a self-consistent linearized theory for the
DOPO in which the mean-field amplitudes are found not from the classical nonlinear equations
of motion, but from ones including quantum corrections; this method provides regularized ver-
sions of the solutions that would be obtained from the bare classical theory, which avoid in
particular the critical values of the mean-field amplitudes at which the linear stability matrix
becomes singular, thus avoiding the unphysical results related to it. Let us remark that this
self-consistent method that we have put forward was already introduced in [27] for the DOPO
problem, but only below threshold; moreover, in the next section we give full meaning to the
method by showing that, within the Schrödinger picture, it is equivalent to making a general
Gaussian-state ansatz consistent with the master equation.
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4. Schrödinger picture approach: general Gaussian ansatz

The self-consistent linearization introduced in the previous section admits a simple interpre-
tation from the point of view of the state of the system: we argue in the following that it is
equivalent to making a general Gaussian ansatz for it. In order to show this, our starting point
is the master equation (2), which in terms of the normalized parameters (5) and variables (6)
can be rewritten as

g2 dρ̂
dτ

=
[
Â, ρ̂
]
+ ∑

j=p,s
(2b̂ jρ̂ b̂†

j − b̂†
j b̂ jρ̂ − ρ̂ b̂†

j b̂ j), (18)

where we have defined an anti-hermitian operator Â = σ(b̂†
p − b̂p)+(b̂pb̂†2

s − b̂†
pb̂2

s )/2.
The evolution equation for the expectation value of any operator B̂ is obtained as

g2 d
dτ

〈B̂〉= g2tr

{
B̂

dρ̂
dτ

}
= 〈[B̂, Â]〉+ ∑

j=p,s

(
〈[b̂†

j , B̂]b̂ j〉+ 〈b̂†
j [B̂, b̂ j]〉

)
. (19)

Applied to the annihilation operators b̂ j, this equation provides exactly the mean-field equa-
tions (8) found in the previous section for the amplitudes β j = 〈b̂ j〉, which depend on the sec-
ond moments 〈δ b̂2

s 〉 and 〈δ b̂pδ b̂†
s 〉. On the other hand, the evolution equations of these second

moments depend on third-order moments, and here is where the Gaussian-state approximation
enters into play: we assume that the state of the system is Gaussian [9] at all times, meaning that
higher order moments can be written as products of first and second moments only. In particu-
lar, this has the consequence that third order moments of quantum fluctuations vanish, that is,
〈δ b̂m

j δ b̂n
kδ b̂p

l 〉= 0, where m, n, and p can be either dagger or nothing. Under this assumption,
the evolution equations of the second order moments

m = col(〈δ b̂2
p〉,〈δ b̂2

p〉∗,〈δ b̂†
pδ b̂p〉,〈δ b̂pδ b̂s〉,〈δ b̂pδ b̂s〉∗,〈δ b̂pδ b̂†

s 〉 (20)

,〈δ b̂pδ b̂†
s 〉∗,〈δ b̂2

s 〉,〈δ b̂2
s 〉∗,〈δ b̂†

s δ b̂s〉),
form the following closed linear system

dm
dτ

= M (βp,βs)m+n(βp), (21)

with the matrix M given by (κps = 1+κ)

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2κ 0 0 −2κβs 0 0 0 0 0 0
0 −2κ 0 0 −2κβ ∗

s 0 0 0 0 0
0 0 −2κ 0 0 −κβ ∗

s −κβs 0 0 0
β ∗

s 0 0 −κps 0 βp 0 −κβs 0 0
0 βs 0 0 −κps 0 β ∗

p 0 −κβ ∗
s 0

0 0 βs βp 0 −κps 0 0 0 −κβs

0 0 β ∗
s 0 βp 0 −κps 0 0 −κβ ∗

s
0 0 0 2β ∗

s 0 0 0 −2 0 2βp

0 0 0 0 2β ∗
s 0 0 0 −2 2β ∗

p
0 0 0 0 0 β ∗

s βs β ∗
p βp −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and
n = g2col(0,0,0,0,0,0,0,βp,β ∗

p ,0); (22)

it is simple to show that the solutions to this linear system coincide with the moments obtained
from the linearized quantum Langevin equations (10), in particular steady-state moments such
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Fig. 2. Variances of the squeezed (a) and anti-squeezed (b) quadratures as a function of
the injection parameter σ , for κ = 1 and g = 0.01 (similar figures are found for any other
choice). As in Fig. 1, the thin-solid light-grey curve corresponds to the usual linearized
description; the solid blue line and dashed-dotted red line correspond to our self-consistent
method below and above threshold, respectively; and the dashed yellow line corresponds
to the predictions of Drummond and collaborators’ perturbative analysis [19, 20].

as the ones in Eqs. (12), and hence, the self-consistent linearization introduced in the previous
section is strictly equivalent to the assumption that the state of the system is a general Gaussian
state whose moments satisfy the constrains imposed by the master equation. Note that, since
we have three possible solutions for the mean-field amplitudes β j, the below-threshold solution

with β̄s = 0 and two above-threshold solutions β̄s = ±
√

Īs, we have three Gaussian ansatzes
that we can use, which we will denote by ρ̂G,0 and ρ̂G,±, respectively. In the next section we
interpret the meaning of these solutions, as well as the jump observed above threshold for the
signal intensity and the prolongation of the ρ̂G,0 ansatz to the σ > 1 region, which were only
partially discussed in the previous section.

5. Analysis of the results and comparison with previous methods

5.1. Quantitative comparison

Let us now analyze the predictions that this self-consistent linear theory makes for the squeezing
of the intracavity signal field, and compare it with some known beyond-linear results. Let us
then define the quadratures x̂s = â†

s + âs and ŷs = i(â†
s − âs), and the corresponding fluctuation

operators, δ x̂s = x̂s −〈x̂s〉 and δ ŷs = ŷs −〈ŷs〉; it is simple from Eqs. (10) or (21) to obtain the
following expression for their variance in the steady-state:

lim
t→∞

〈δ x̂2
s 〉 =

(1+κ)(1+Īs)−
√

Īp(
1+Īs−

√
Īp
)(

1+κ−
√

Īp
) , (23)

lim
t→∞

〈δ ŷ2
s 〉 =

(1+κ)(1+Īs)+
√

Īp(
1+Īs+

√
Īp
)(

1+κ+
√

Īp
) .

When the classical solutions for Īp and Īs are considered, one immediately sees that 〈δ x̂2
s 〉 →

∞ and 〈δ ŷ2
s 〉 → 0.5 at threshold σ = 1, which is exactly the unphysical prediction that we

were talking about, since infinite quadrature fluctuations imply infinite photon number, that
is, 〈â†

s âs〉 → ∞. On the other hand, when we introduce in these expressions the regularized
solutions discussed in Section 3, obtained through the self-consistent method, 〈δ x̂2

s 〉 becomes
finite in all parameter space, while at the same time the squeezing level of 〈δ ŷ2

s 〉 is reduced; this
can be appreciated in Fig. 2. More quantitatively, exactly at the critical point σ = 1, it is simple
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Fig. 3. Marginal p(x+) corresponding to the positive P distribution of the signal field in the
κ → ∞ limit as obtained from the exact solution (thin-solid light-grey), and our Gaussian
ansatzes below (solid blue) and above (dashed-dotted red) threshold. We have picked the
value g = 0.01 and show five values of σ : 1−g (a), 1−g2/4 (b), 1+g2/4 (c), 1+g (d), and
1+ 2g (e). In (f) we show the marginal q(x−) for σ = 1+ g; in the case of this marginal,
similar figures are found for any other value of σ around the classical threshold.

to obtain the following expressions for the quadrature variances to the leading order in g:

lim
t→∞

〈δ x̂2
s 〉 ≈

2
√

2
g

, and lim
t→∞

〈δ ŷ2
s 〉 ≈ 0.5+

g

8
√

2
, (24)

showing explicitly how the anti-squeezing is regularized, while the variance of the squeezed
quadrature is increased with respect to its value obtained with the usual linearization procedure.

In order to understand how good the self-consistent linearization is from a quantitative point
of view, we now compare these results with the ones obtained from the perturbative approach
that Drummond and collaborators developed in the vicinities of the critical point, by making
a consistent multiple-scale expansion of the stochastic variables within the positive P repre-
sentation [19, 20]. This procedure has the virtue of being valid for any κ , although it is re-
liable only close enough to threshold, concretely for |σ −1| < g/

√
2; nevertheless, since we
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are mainly interested in how the self-consistent linearization regularizes the conventional lin-
earization around the critical point σ = 1, where the divergences appear, this will be enough for
comparing with our results. For our purposes, their most relevant results concern the steady-
state (normalized) pump amplitude and the quadrature fluctuations of the signal field, which
read

lim
t→∞

〈b̂p〉 ≈ σ − g

4
√

2
〈x2〉, (25)

lim
t→∞

〈δ x̂2
s 〉 ≈

√
2

g
〈x2〉, lim

t→∞
〈δ ŷ2

s 〉 ≈
3−σ

4
+

g

16
√

2

(
2+3κ
2+κ

)
〈x2〉, (26)

to the leading order in g, where we have defined a real stochastic variable x distributed according
to the probability density function

D(x) = d exp

[
σ −1√

2g
x2 − x4

16

]
, (27)

with d a suitable normalization constant. The square of Eq. (25) corresponds to the curve that
we plotted in Fig. 1(a) to compare with the steady-state intensity Īp that our self-consistent
linearization provides. On the other hand, exactly at threshold (σ = 1) the moments derived
from this distribution admit very simple expressions in terms of Gamma functions Γ(z), and in
particular we have 〈x2〉= 4Γ(3/4)/Γ(1/4)≈ 4/3, what, together with (24), allows us to write

limt→∞〈δ x̂2
s 〉
∣∣
Drummond et:al

limt→∞〈δ x̂2
s 〉|self−consistent

≈ 2
3
, (28)

limt→∞〈δ ŷ2
s 〉
∣∣
Drummond et:al −0.5

limt→∞〈δ ŷ2
s 〉|self−consistent −0.5

≈ 2
3

(
1+

2κ
2+κ

)
. (29)

From these expressions we see that the self-consistent linearization provides a regularization
which compares pretty well with Drummond’s predictions, at least regarding the order of mag-
nitude. In particular, we bring the reader’s attention to the anti-squeezing predicted by the self-
consistent method, which is only 50% above the one predicted by Drummond and collaborators.

5.2. Some relevant qualitative features

As a last test, we now compare the Gaussian ansatzes proportioned by our self-consistent lin-
earization against the exact steady state of the signal field, which is known in the limit κ 
 1
(in which the pump field can be adiabatically eliminated) [14,23,24]; in particular, the positive
P distribution associated to the reduced steady state of the signal mode is given by [23, 24]

P(αs,α+
s ) =

⎧⎨
⎩ K

[(
α2

s − 2σ
g2

)(
α+2

s − 2σ
g2

)]−1+2/g2

e2αsα+
s for |αs| , |α+

s | ≤ √
2σ/g

0 for |αs| , |α+
s |>√

2σ/g
,

(30)
where αs and α+

s are real, and K is a suitable normalization factor. Explicit expressions of the
state ρ̂ can be built from such a positive P distribution, but, for our purposes, we only need the
fact that it allows for the evaluation of steady-state moments in normal order as

lim
t→∞

〈â†m
s ân

s 〉=
∫
C2

dαsdα+
s P(αs,α+

s )α+m
s αn

s . (31)

Let us define the variables x+ = αs +α+
s and x− = αs −α+

s , noting that x+ corresponds di-
rectly to the stochastic representation of the anti-squeezed quadrature x̂s = âs + â†

s , while x−

#220321 - $15.00 USD Received 4 Aug 2014; accepted 16 Aug 2014; published 23 Sep 2014
(C) 2014 OSA 6 October 2014 | Vol. 22,  No. 20 | DOI:10.1364/OE.22.024010 | OPTICS EXPRESS  24021



corresponds to ‘i-times’ the squeezed one, that is, to iŷs = âs− â†
s . In Figs. 3(a-e) we show how

the marginal p(x+) =
∫
R

dx−P(x+,x−) changes as we cross the threshold. The complementary
marginal q(x−) =

∫
R

dx+P(x+,x−) is shown only at one value of σ because it does not change
perceptibly around the critical point, and the Gaussian ansatzes adapt to it almost perfectly, as
can be appreciated in Fig. 3(f). This last fact is of special relevance, since it sllows us to see
that the squeezing is actually well captured within a linearized or Gaussian description (but not
the anti-squeezing).

The first physically relevant result that this exact steady-state solution predicts is 〈âs〉 = 0
for all σ . This might seem surprising, since it seems to suggest that the signal field is never
switched on, that is, that the above-threshold solution with 〈âs〉 �= 0 characteristic of DOPOs
is incorrect; this, however, is not true, the right answer is a bit more subtle: as σ is increased,
the distribution develops two peaks (see Fig. 3) which, individually, correspond to the above-
threshold amplitudes β̄s =±

√
Īs, but, since they are developed together, their contributions to

〈âs〉 average to zero. From a more fundamental point of view, this just reflects the fact that
the master equation (2) has the Z2 symmetry âs → −âs, and hence, if ρ̂sol,+ is a symmetry-
breaking ansatz with 〈âs〉 =

√
Īs/g, then ρ̂sol,− = exp(−iπ â†

s âs)ρ̂sol,+ exp(iπ â†
s âs), which has

〈âs〉 = −
√

Īs/g, is another equally valid ansatz; in the absence of any bias, the state of the
system has to be regarded as the balanced mixture ρ̂sol = (ρ̂sol,++ ρ̂sol,−)/2, which is the one
giving the correct experimental statistics: every time the DOPO is switched on, it has to choose
the phase 0 or π according to the particular initial fluctuations from which the steady state is
built up, that is, according to spontaneous symmetry breaking. It feels natural to think that one
can force the system to pick one particular phase at every experimental run by adding an explicit
symmetry breaking mechanism such as the injection of a weak laser at the signal frequency—a
term like Ĥinj,s = ih̄Es(â†

s − âs) in the Hamiltonian—; however, this picture is only correct once
enough above threshold, since close to threshold quantum tunneling between the states ρ̂sol,±
is too fast [14, 30, 31], and no phase locking can be achieved within the observation time. In
other words, from an observational point of view, it only makes sense to analyze the properties
of ρ̂sol,+ and ρ̂sol,− separately once the peaks of the positive P distribution are enough far
apart, as otherwise the fast tunneling times mean that only the mixture ρ̂sol has observational
meaning. This is precisely why we made the statement that the jump seen in the signal intensity
above threshold with the self-consistent method is not relevant for real applications, as the
predictions of the mixture ρ̂G,> = (ρ̂G,++ ρ̂G,−)/2 of the above-threshold ansatzes are basically
the same as those of the below threshold ansatz ρ̂G,0, and hence it is only important that the
method provides the symmetry breaking solutions ρ̂G,± once these acquire physical meaning
as metastable states, that is, as states which diffuse to the mixture ρ̂G,> in a time-scale much
larger than the experimental one.

Knowing the exact form of the positive P distribution in the limit κ 
 1 allows us to get
a pictorial feeling of how good our Gaussian ansatzes are. In particular, superposed to the
exact marginals (solid-thin light-grey line), in Fig. 3 we plot the marginals corresponding to
the ansatzes ρ̂G,0 (solid blue) and the mixture ρ̂G,> (dashed-dotted red). We can appreciate how
ρ̂G,0 adapts very well to ρ̂sol below threshold, except close to the point in which the peaks
start developing (σ = 1− g2/4), where the exact distribution flattens in the center, loosing its
approximate Gaussianity. Note also that the above-threshold Gaussian ansatz ρ̂G,> appears at
σ = 1+g in this κ → ∞ limit, and it quite rapidly converges to the exact ρ̂sol as we increase σ .

Let us finally retake one subtle point that we raised at the end of Section 3: since ρ̂G,0 can-
not be discarded based on stability arguments of the (regularized) mean-field equations, in the
region σ > 1+g one has to choose between ρ̂G,0 and ρ̂G,> as the relevant ansatz. It is obvious
from Fig. 3 that once ρ̂G,> becomes available, this is the ansatz that one should use in the steady
state. Nevertheless, there is still the open question of whether ρ̂G,0 may have meaning in the
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metastable sense, just as ρ̂G,± do; our intuition is that even though quantum fluctuations may
make it linearly stable even for σ > 1, its basin of attraction will decrease fast as σ increases,
making it negligible soon above threshold, just as the classical equations of motion predict. We
believe this is an experimentally relevant point worth analyzing in some future works.

6. Conclusion

In summary, we have developed a linearization procedure for nonlinear optical cavities in which
the mean-field amplitudes are found self-consistently by introducing some information about
the quantum fluctuations in their evolution equations; we have applied it to one of the sim-
plest and best studied nonlinear resonators, the DOPO, showing how the method is capable of
regularizing the divergences found at the critical point with the traditional linearized analysis.
We have also shown that such procedure is completely equivalent to using a general Gaus-
sian ansatz for the state of the system. Finally, we have compared the results derived from
the self-consistent linearization with other known exact (positive P distribution under adiabatic
elimination of the pump [23, 24]) or quasi-exact (Drummond and collaborators’ perturbative
expansion [19,20]) methods for the DOPO, proving that they are reliable qualitatively, and also
roughly quantitatively, with the advantage that two-time correlators (and hence output spec-
tra of observables) are straightforwardly evaluated within the linearized description, what we
think will be useful to study quantum correlations in more complicated systems such as non-
degenerate or multi-mode OPOs [32–35]. The application of the method to systems with other
types of critical points and symmetries is an open question that will be interesting to analyze
in the future as well; the bistability found in Kerr resonators [36, 37] or the Hopf bifurcations
found in optomechanical cavities [38] and intracavity second-harmonic generation [39,40], are
good candidate scenarios.
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