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Trapped atoms are among the most promising platforms for quantum technologies. They play a remarkable
role in quantum simulation as well as high-precision quantum metrology, which exploits the quantum coherence
of a single electronic or motional degree of freedom of an atom or an ensemble. However, future high-precision
quantum metrology will require the use of entangled states of several degrees of freedom. Here we propose a
protocol capable of generating high-N NOON states where the entanglement is shared between the motion of a
trapped atom and an electromagnetic cavity mode, a so-called “hybrid” configuration. We explore the feasibility
of the proposal in a platform consisting of an optically trapped neutral atom excited to its circular-Rydberg-
state manifold, coupled to the modes of a high-Q microwave cavity. This compact hybrid architecture has the
advantage that it can couple to signals of very different nature, which modify either the atom’s motion or the
cavity modes. Moreover, the exact same setup can be used right after the state-preparation phase to implement
the interferometer required for quantum metrology.
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I. INTRODUCTION

Trapped neutral atoms are at the forefront of quantum tech-
nological applications. They are currently the main platform
for quantum simulation [1–9] and find applications in many
other quantum information processing tasks [10–12]. Further-
more, trapped atoms play a notable role in metrological ap-
plications [13,14], thanks to their robust quantum coherence,
high controllability, and strong coupling with external fields.
For example, an optical lattice loaded with 87Sr forms the
basis for the most precise clock built to date [15,16].

However, moving forward in the field of quantum metrol-
ogy will require exploiting more than just the quantum co-
herence of a single degree of freedom. Indeed, it is by now
well established that distributing entanglement among several
degrees of freedom can bring sensitivities all the way down
to the ultimate Heisenberg limit [13,17,18]. In this regard,
NOON states of two oscillators and Greenberger-Horne-
Zeilinger (GHZ) states of N two-level systems are among the
most promising entangled states. GHZ states have enjoyed a
more successful experimental life, with states up to N = 20,

*n.mohseni@iasbs.ac.ir
†saeidian@iasbs.ac.ir
‡jdowling@phys.lsu.edu
§Corresponding author: derekkorg@gmail.com

14, and 10 generated with atomic arrays [19], ion chains [20],
and linear optics [21], respectively. However, their use in
quantum metrology requires the coherent manipulation of the
large number of two-level systems, as well as their common
coupling to the signal one wants to measure. In contrast,
NOON states require the manipulation of just two harmonic
modes (and only one of them has to couple to the signal),
and are therefore more desirable in general. Unfortunately,
high-N NOON states have traditionally been more elusive. In
the photonic case, the largest NOON state to date has N = 5
[22]. In the case of motional states of trapped atoms, a big step
forward has been recently achieved with the generation of an
N = 9 state of two motional modes of a single ion [23].

If trapped atoms are to also come ahead in this new
“entangled metrological era,” we will need to design further
practical protocols for the generation of high-N NOON states,
either between atomic degrees of freedom or between an
atom and some other system, in what are dubbed “hybrid”
configurations, which might lead to more flexible and versatile
meters.

Here we show that a single Rydberg atom tightly trapped
by an optical field within a microwave cavity will open the
door to the possibility of generating such states. This architec-
ture combines the best of two worlds. On the one hand, in an
atomic fly-through configuration [24,25], these systems have
been crucial for the field of cavity quantum electrodynamics:
high-Q superconducting cavities and microwave transitions
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between Rydberg states have provided access to the deep-
strong-coupling regime of light-matter interactions. On the
other hand, the tight confinement induced by optical fields
[4–8,19,26–41] allows one to apply to neutral atoms all of the
well-established toolbox developed for trapped ions [42,43],
arguably among the most versatile quantum systems, allowing
for the engineering of a large variety of effective interac-
tions between motional, electronic, and photonic degrees of
freedom. In this paper, we exploit the combined outstanding
properties of these two scenarios to introduce a practical
protocol for the generation of hybrid high-N NOON states
of an atom and a cavity mode, in a compact architecture that
can directly serve as the interferometer required for quantum
metrology [17].

Our protocol is inspired by the so-called magic beam
splitter [44], which uses N-photon input states, beam splitters,
controlled-π phase gates, and on/off detectors as resources.
Here we show that a trapped three-level atom interacting with
two cavity modes provides all the required ingredients for
the realistic implementation of a similar protocol, which we
introduce in three steps. First, we propose an implementation
of a hybrid beam splitter (HBS) between a cavity mode and
a motional mode of the atom, with transmissivity and relative
phase fully controllable via the amplitude of an external field
and the interaction time. Hence, we call this a “temporal
analog” of a HBS. We then show that a second internal
transition can be used to generate strong hybrid cross-Kerr ef-
fective interactions between the cavity and the atom’s motion,
which implement the required controlled-phase gate. These
operations are then combined with other standard ones and
with the possibility of creating high-N Fock states in the
atom’s motion [45–48] or in the microwave mode [49–52] to
show that three internal levels, together with a simple design
of external drives and cavity interactions, suffice to implement
a temporal analog of a magic beam splitter.

At the end, we briefly comment on specific metrological
applications, emphasizing that our hybrid NOON states pro-
vide a switchable photonic or mechanical architecture that is
sensitive to signals of very different nature. Moreover, the
hybrid Mach-Zehnder interferometer required for quantum
enhanced metrology [17] can be directly implemented with
the same tools introduced for the NOON state generation.

II. TEMPORAL ANALOG OF A HYBRID BEAM SPLITTER

Let us consider an atom of mass m cooled to the ground
state of a harmonic optical trap with trapping frequency ν

(we consider an isolated motional mode) [8,28,30,31]. We
assume that the atom has been excited to a long-lived circular
Rydberg state [8,24], and consider the transition between two
of such internal states |g〉 and |e1〉 with frequency difference
ω0. The atom is inside a microwave cavity and hence interacts
with its standing-wave modes, of which we consider here a
specific one with frequency ω1. The cavity field is pumped
by a coherent microwave source at frequency ωp (see the
energy-level scheme in Fig. 1). In a picture rotating at this
frequency, the Hamiltonian reads [53]

Ĥ = h̄νâ†â + h̄�0σ̂
†
1 σ̂1 + h̄�1b̂†

1b̂1

− h̄(E∗b̂1 + E b̂†
1) + h̄g(x̂)(σ̂ †

1 b̂1 + σ̂1b̂†
1), (1)

|e1

|e2

|g

Δ0

Δ1

Δ2

ωp
ω1 ω2

beam splitter controlled-π
swap

FIG. 1. Energy-level scheme of a three-level atom interacting
with the cavity modes. The first transition is used to implement a
hybrid beam splitter when |�0| � �1 = ν. The second transition
is used to implement a hybrid controlled-π operation when |�2|
is large or a swap operation (through a resonant Jaynes-Cummings
interaction) when it is zero. Here we assume that the detunings �1,2

are tunable at real time, as explained in the text.

where b̂1 and â annihilate, respectively, cavity photons and
motional quanta (phonons), σ̂1 = |g〉〈e1| is the lowering oper-
ator of the internal transition, E is the strength of the pump,
which is detuned by � j = ω j − ωp from the corresponding
frequency, g(x̂) = � sin(ηx̂ + 	), where � is the atom-cavity
coupling strength (vacuum Rabi frequency), x̂ = â + â†, and
	 = ω1x0/c, where x0 is the position of the atom relative to
a node of the standing wave. η is the Lamb-Dicke parameter,
given by the ratio between the zero-point spatial fluctuations
of the atom in the trap and the mode wavelength. Since we
work with microwave modes, the bare η is exceedingly small
[54–64], but it can be greatly enhanced via state-dependent
optical traps [65–68], as we will discuss in the final section.

We consider the large-atomic-detuning limit (|�0| �
�, |�1|, ν), where the internal levels can be adiabatically
eliminated [69]. In Appendix A, we show that this leads to
an effective Hamiltonian,

ĤOM = h̄νâ†â + h̄[�1 − g0(â + â†)]b̂†
1b̂1 − h̄(E∗b̂1 + E b̂†

1),
(2)

where we have defined g0 = η�2/2�0 and have assumed
that the atom is located in between a node and an antinode
(	 = π/4), which maximizes this effective coupling. This
Hamiltonian is equivalent to that found in cavity quantum
optomechanics [70].

Including optical and motional damping at rates γ and �,
respectively, the master equation governing the evolution of
the system can be written as

d ρ̂

dt
=

[
ĤOM

ih̄
, ρ̂

]
+ γDb1 [ρ̂] + �Da[ρ̂], (3)

with dissipator DJ [ρ̂] = 2Ĵρ̂Ĵ† − ρ̂Ĵ†Ĵ − Ĵ†Ĵρ̂. As we show
in Appendix B, the classical limit predicts a coherent state
with amplitudes α and β for the motional and optical modes,
satisfying

α̇ = −(� + iν)α + ig0|β|2, (4a)

β̇ = −[γ + i�1 − ig0(α + α∗)]β + iE . (4b)
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We will work under conditions leading to a steady
state ᾱ = g0|β̄|2/(ν − i�) and β̄ = E/[�1 − g0(ᾱ + ᾱ∗) −
iγ ]. Next, we consider small quantum fluctuations around
it by moving to a picture displaced to the classical solution
and considering only terms in the master equation bilinear in
annihilation and creation operators; see Appendix B. In this
picture, the transformed state evolves according to Eq. (3), but
replacing the effective Hamiltonian by

ĤLIN = h̄νâ†â + h̄�1b̂†
1b̂1 − h̄g0(â + â†)(β̄∗b̂1 + β̄b̂†

1). (5)

As we show in Appendix B, this “linearization” is valid
provided that |β| or ν/g0 are much larger than

√
N , where

N characterizes the photon number 〈b̂†
1b̂1〉 in the displaced

picture (which we anticipate matches the size of the NOON
state).

Finally, choosing a detuning �1 = ν and working in the
ν � g0|β̄| regime, this Hamiltonian takes the form

ĤBS = h̄ν(â†â + b̂†
1b̂1) − h̄g0(β̄âb̂†

1 + β̄∗â†b̂1), (6)

within the rotating-wave approximation. The corresponding
time evolution operator corresponds to a HBS operation
whose mixing angle θ = g0|β̄|t and phase arg{β̄} (assumed
π/2 in order to simplify upcoming derivations without loss
of generality) can be controlled via the interaction time and
the pump amplitude E . Note, however, that the performance
is limited by the coherence time of the system, which we can
estimate as γ −1, typically much shorter than �−1 [8,24]. Later
we show that Rydberg atoms trapped in microwave cavities
allow for coherence times that are compatible with the mixing
angle θ = π/4 required in our proposal.

III. TEMPORAL ANALOG OF A HYBRID
CONTROLLED-PHASE GATE

We now consider the interaction between the atom and a
second cavity mode with frequency ω2, closer to resonance
with a transition to a different excited state |e2〉, but still
detuned by �2 (see Fig. 1). The Hamiltonian takes the form
(1), which, assuming the atom to be located at the antinode of
the cavity mode (	 = π/2), leads to

Ĥ = h̄νâ†â + h̄�2b̂†
2b̂2 + h̄� cos(ηx̂)(σ̂ †

2 b̂2 + σ̂2b̂†
2), (7)

where in this case we are in a picture rotating at the frequency
of the internal transition, and b̂2 and σ̂2 refer to the corre-
sponding cavity mode and internal transition. In Appendix A,
we show that working in the ν � |�2| � � regime, the adi-
abatic elimination of the internal levels leads to the effective
hybrid cross-Kerr interaction [71],

ĤcK = h̄νâ†â + h̄�2b̂†
2b̂2 − h̄gcKâ†âb̂†

2b̂2, (8)

where gcK = 2η2�2/�2. In this case, the time-evolution op-
erator is equivalent to a controlled-phase operation, where
one mode feels a phase shift that depends on the number
of photons of the other. The cross-phase shift gcKt can be
controlled in this case through the interaction time. A π shift
requires gcK > γ , whose feasibility is proven later.

|g

|0 2 + |1 2

|0 2

B̂ B̂

Ĉ

Ĵ

R̂

|N00N±

|0 1

|N a

FIG. 2. Schematic representation of the protocol for the genera-
tion of NOON states. a refers to the atom’s motion, subindices {1, 2}
to the cavity modes, B̂ to a 50/50 beam splitter, Ĉ to a controlled-π ,
Ĵ to a swap, and R̂ to a π/4 pulse. A final measurement of the internal
state of the atom (|g〉 or |e2〉) creates the desired NOON state.

IV. HIGH-N NOON STATE GENERATION PROTOCOL

Our proposal is shown in Fig. 2, which is closely in-
spired by the so-called magic beam splitter [44]. In order to
understand its principle of operation, let us first consider a
situation without the controlled-π operation Ĉ (yellow box in
the figure), and follow the paths 1 and a, which run along a
Mach-Zehnder interferometer. With no more elements in the
paths, the combination of the beam splitters acts as a swap gate
between the modes. Hence, starting with a Fock state with
N phonons for definiteness (but the protocol works as well
starting with N photons instead), the state |0〉1|N〉a turns into
|N〉1|0〉a (subindex a refers to the motional Fock states, while
subindices {1, 2} refer to the cavity modes). The situation is
radically different when a π phase shift is performed on path
a in between the beam splitters, which completely cancels
the effect of the latter. In such case, the input state remains
unchanged. Hence, if one was able to engineer a balanced su-
perposition of 0 and π phase shifts, the output state would turn
into a superposition of |N〉1|0〉a and |0〉1|N〉a, that is, a NOON
state. This is exactly what is accomplished by the controlled-π
operation with mode 2 (assumed in a superposition of 0 and 1
photons), together with the subsequent operations involving
the second internal atomic transition. A final measurement
revealing the state of the atom decides the relative phase
between the |N〉1|0〉a and |0〉1|N〉a states forming the NOON
state. In the remainder of this section, we explain all these
steps in detail. In the next section, we will then comment on
the experimental requirements and their feasibility.

Recall that a balanced beam splitter acts as the unitary
B̂ = exp[π (â†b̂1 − âb̂†

1)/4], which transforms the operators
as B̂âB̂† = (b̂1 + â)/

√
2 and B̂b̂1B̂† = (b̂1 − â)/

√
2. Hence,

applied to the initial state |0〉1|N〉a(|0〉2 + |1〉2)|g〉 (we omit
normalizations in the following to ease the notation), we
obtain

(b̂†
1 + â†)N |0〉1|0〉a(|0〉2 + |1〉2)|g〉. (9)

Next we apply the controlled-π with unitary Ĉ =
exp(iπ b̂†

2b̂2â†â), which turns the state into

(b̂†
1 + â†)N |0〉1|0〉a|0〉2|g〉 + (b̂†

1 − â†)N |0〉1|0〉a|1〉2|g〉, (10)
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where we have used eiπ â†ââe−iπ â†â = −â. A further beam
splitter B̂ then turns the state into

|0〉1|N〉a|0〉2|g〉 + (−1)N |N〉1|0〉a|1〉2|g〉. (11)

Finally, we apply two operations that involve the internal
levels. First, we apply an excitation swap between the second
cavity mode and the corresponding transition, with unitary
Ĵ = exp[−iπ (b̂†

2σ̂2 + b̂2σ̂
†
2 )/2], which performs the transfor-

mations Ĵ|0〉2|g〉 = |0〉2|g〉 and Ĵ|1〉2|g〉 = −i|0〉2|e〉. Then,
we apply a π/4 pulse on the internal transition, with cor-
responding unitary R̂ = exp[π (σ̂ †

2 − σ̂2)/4], and transforma-
tions R̂|g〉 = |g〉 + |e〉 and R̂|e〉 = |e〉 − |g〉. These turn the
state into

|NOON+〉|0〉2|g〉 + |NOON−〉|0〉2|e〉, (12)

where we have defined the hybrid NOON states |NOON±〉 =
|0〉1|N〉a ± i(−1)N |N〉1|0〉a. It is then clear that a final mea-
surement of the atomic state will project the atom and the
first cavity mode into a |NOON±〉 state, depending on the
outcome.

V. EXPERIMENTAL CONSIDERATIONS
AND FEASIBILITY

Let us now comment on the experimental steps and corre-
sponding requirements. We start with some general consider-
ations and then discuss specific parameters.

As we made obvious from the notation, the beam splitters
B̂ and controlled-π Ĉ operations are implemented through
cavity modes 1 and 2, respectively, following the methods
presented in the first sections. The rest of the operations are
standard [24]: the swap Ĵ is performed by letting a resonant
Jaynes-Cummings (JC) interaction h̄�(σ̂ †

2 b̂2 + σ̂2b̂†
2) run over

a time π/2�, while R̂ is obtained by driving the second tran-
sition with a coherent microwave π/4 pulse. The crucial point
is that since the operations are applied sequentially, we need to
be able to switch on and off the corresponding interactions at
will. Following [72], here we suggest to do so by modifying
the corresponding atom-cavity detunings �0 and �2 in real
time. Specifically, the frequency of the atomic transition can
be tuned in situ and fast through either the dc Stark, Zeeman,
or ponderomotive shifts generated, respectively, by external
electrostatic [24,72], magnetostatic [42,73], or optical [36]
fields.

Another crucial piece is the preparation of the initial states.
Specifically, in order to generate high-N NOON states, we
need to initialize either the cavity mode 1 or the atom’s motion
in a Fock state with large N . While this has been demonstrated
for both alternatives, the relatively strong coherent back-
ground β̄ required for the beam-splitter operation makes it
challenging to adapt the established protocols for microwave
cavities, where photonic Fock states up to N = 7 have been
stabilized via quantum feedback techniques [49–51]. Fortu-
nately, the (comparatively small) steady-state amplitude ᾱ of
the trapped atom poses no problem since it just defines a new
stationary equilibrium position, but no oscillation. Moreover,
Fock states of trapped ions up to N = 16 were demonstrated
in trapped ions more than 20 years ago [45], proving that
this is a very mature field (see [46–48] for more modern and

elaborated experiments). The corresponding protocols exploit
the fact that the interaction between motion and internal
states can be alternated between JC and anti-JC at will, what
makes them directly applicable to our proposal, where this is
equally possible. As for the preparation of cavity mode 2 in a
superposition of 0 and 1 photons, it can be easily performed
following techniques that have become standard in the field of
cavity quantum electrodynamics [24]. For example, one can
apply the inverse of the R̂Ĵ sequence that we perform at the
end of our protocol: starting from the atom in the ground state,
a π/4 pulse is applied, followed by a swap of the internal
excitation to the cavity field. Note that this state-preparation
stage must come only once the system relaxes to the steady
state after application of the microwave drive, and under large
detuning conditions such that no other process acts during this
time.

Finally, the measurement of the internal atomic state can
be performed following standard techniques in the field of
trapped atoms and ions [42]. Hence, together with the pre-
vious discussion, this shows that all the pieces required for
the implementation of the high-N NOON protocol presented
above are, in principle, available.

Let us now move on to the feasibility for concrete ex-
perimental parameters. The most demanding operation is the
controlled-π , which requires the conditions ν � |�2| � �

together with gcK = 2η2�2/|�2| > γ in order to ensure that
the coherence time is large enough to implement a π shift.
Taking cavity frequencies and quality factors around 2π ×
50 GHz [24,72] and 5 × 109 [52,72], respectively, we obtain
γ = 2π × 10 Hz. On the other hand, typical vacuum Rabi
couplings for transitions between circular Rydberg states are
around � = 2π × 50 KHz [24,72]. We then assume |�2| =
10�, and a trapping frequency ν = 10|�2| = 2π × 5 MHz
(values just two orders of magnitude below this have been
demonstrated already [8,41] and no fundamental limitation
exists to bring them even higher, as shown in [38]). As for the
Lamb-Dicke parameter, we assume the value η = 0.1, which
is currently available with the aid of state-dependent trapping
potentials [65–68]. Putting all these estimates together, we
obtain gcK = 10γ , as required.

The rest of the operations are less demanding. The
effective beam-splitter Hamiltonian requires |�0| � ν �
g0max{√N, |β̄|}, together with g0|β̄| � γ . Taking |�0| =
10ν, we obtain g0 = 2π × 5 Hz. The number of intracavity
photons |β̄|2 generated by the coherent microwave pump
is then bounded by (ν/g0)2 = 1012 � |β̄|2 � (γ /g0)2 = 4.
Choosing it between, e.g., 500 and 10 000 (photon num-
bers easily generated with coherent pumps), we remain
safely within the desired regime. As for the swap operation,
we simply need � � max{γ , �e}, where �e refers to the
spontaneous-emission rate associated to the internal transi-
tion. For circular Rydberg states, the latter is typically even
smaller than γ [8,24], and hence we are deep into the required
regime.

We have also analyzed the resilience of our proposal to
parameter fluctuations. We have considered fluctuations in the
beam splitter and controlled-π parameters, finding analytic
expressions for the fidelity; see Appendix C for details. As
a figure of merit, we find fidelities above 90% up to N = 40
for a 1% standard deviation in the parameters.
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VI. DISCUSSION AND CONCLUSIONS

Our compact architecture offers interesting opportunities
from a metrological standpoint. Its hybrid character makes it
a versatile sensor, i.e., sensitive to signals that couple either
to the cavity or to the atom’s motion. Specifically, right after
generating the NOON state, the same setup can be used to
implement the temporal analog of the Mach-Zehnder inter-
ferometer required for metrology [17]: a hybrid beam-splitter
interaction is implemented for the required time following our
proposal, after which the atom or the cavity is coupled to the
signal we wish to measure (which introduces a measurable
phase difference between them), and then decoupled again
from the signal before the optimal retrieval measurement
scheme is applied [17,18].

In conclusion, we have shown that an architecture based on
trapped atoms excited to circular Rydberg states and coupled
to the modes of a microwave cavity will be ideal for the
compact implementation of a versatile quantum metrological
system, where the state preparation and sensing stages occur
within the same device.
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APPENDIX A: ADIABATIC ELIMINATION OF
THE INTERNAL LEVELS

In this Appendix, we provide a detailed elimination of the
internal levels. We will proceed in the Schrödinger picture,
using the method based on projection operators. Hence, we
first introduce the general method, which we then particularize
to the two relevant internal transitions.

1. General procedure: Projection operator method

Let us introduce, in general, the method based on projec-
tion operators. Consider a closed system evolving according
to a Hamiltonian Ĥ , so that its state |ψ (t )〉 satisfies the
Schrödinger equation ih̄∂t |ψ (t )〉 = Ĥ |ψ (t )〉. The idea of the
method relies on the fact that we can divide the Hilbert space
into a relevant sector (whose effective dynamics we want to
describe) and an irrelevant one (whose dynamics is trivial,
typically because it stays unpopulated). We then define the
projector operator P̂ = P̂2, which projects onto the relevant
subspace, and its complement Q̂ = 1 − P̂. Applying the latter
onto the Schrödinger equation, we get

ih̄∂t Q̂|ψ (t )〉 = Q̂Ĥ (P̂ + Q̂︸ ︷︷ ︸
1

)|ψ (t )〉

= Q̂ĤQ̂|ψ (t )〉 + Q̂Ĥ P̂|ψ (t )〉, (A1a)

⇓
Q̂|ψ (t )〉 = 1

ih̄
eQ̂Ĥt/ih̄Q̂|ψ (0)〉

+
∫ t

0

dt ′

ih̄
eQ̂Ĥ (t−t ′ )/ih̄Q̂Ĥ P̂|ψ (t ′)〉. (A1b)

Naturally, we assume that the system is in the relevant sub-
space initially, so that Q̂|ψ (0)〉 = 0. Hence, projecting the
Schrödinger equation in the relevant subspace, we then obtain

ih̄∂t P̂|ψ (t )〉 = P̂Ĥ P̂|ψ (t )〉 + P̂ĤQ̂|ψ (t )〉
= P̂Ĥ P̂|ψ (t )〉

+
∫ t

0

dτ

ih̄
P̂ĤeQ̂Ĥτ/ih̄Q̂Ĥ P̂|ψ (t − τ )〉, (A2)

where we have made the integration variable change
t ′ = t − τ .

With full generality, we can decompose the Hamiltonian
as Ĥ = Ĥ0 + Ĥ1, where Ĥ0 contains all the terms that do not
connect the relevant and irrelevant subspaces (P̂Ĥ0Q̂ = 0 =
Q̂Ĥ0P̂), while Ĥ1 gathers the rest of the terms. Note that we
can even assume without loss of generality that P̂Ĥ1P̂ = 0,
that is, the “interaction” Hamiltonian Ĥ1 does not connect
states within the relevant subspace. It is always possible to
ensure such a property, for if that is not the case, we just
need to redefine Ĥ0 and Ĥ1 as Ĥ0 + P̂Ĥ1P̂ and Ĥ1 − P̂Ĥ1P̂,
respectively. Effective theories are meaningful whenever one
can treat Ĥ1 as a perturbation with respect to Ĥ0. Hence, in the
following, we consider only terms up to second order in Ĥ1 in
(A2). In order to do this, we use |ψ (t − τ )〉 = e−Ĥτ/ih̄|ψ (t )〉
and the property P̂Ĥ0Q̂ = 0 = Q̂Ĥ0P̂, which allows us to
write (A2) as

ih̄∂t P̂|ψ (t )〉

= P̂Ĥ P̂|ψ (t )〉 +
∫ t

0

dτ

ih̄
P̂Ĥ1eQ̂Ĥτ/ih̄Q̂Ĥ1P̂e−Ĥτ/ih̄|ψ (t )〉

=
[

P̂Ĥ P̂+
∫ t

0

dτ

ih̄
P̂Ĥ1eĤ0τ/ih̄Ĥ1e−Ĥ0τ/ih̄P̂

]
P̂|ψ (t )〉, (A3)

where in the last step we have made many simplifications.
First, we have neglected the Ĥ1 terms coming from the
exponentials since the expression is already quadratic in
Ĥ1 without counting these terms. We have also made use
of [P̂, Ĥ0] = 0 = [Q̂, Ĥ0], which follows directly from 0 =
P̂Ĥ0Q̂ − Q̂Ĥ0P̂ = P̂Ĥ0(1̂ − P̂) − (1̂ − P̂)Ĥ0P̂ = [P̂, Ĥ0], and
can be used to prove the property

eQ̂Ĥ0τ/ih̄ =
∞∑

k=0

1

k!

( τ

ih̄

)k
Q̂Ĥ0Q̂Ĥ0 . . . Q̂Ĥ0︸ ︷︷ ︸

k times

=
∞∑

k=0

1

k!

( τ

ih̄

)k
Q̂k︸︷︷︸
Q̂

Ĥ k
0 = Q̂eĤ0τ/ih̄. (A4)

Finally, we have used P̂Ĥ1Q̂ = P̂Ĥ1(1 − P̂) = P̂Ĥ1 and, sim-
ilarly, Q̂Ĥ1P̂ = Ĥ1P̂. The term inside the brackets in (A3) can
then be interpreted as an effective Hamiltonian in the relevant
subspace, which we can write in the compact form

Ĥeff(t ) = P̂Ĥ0P̂ +
∫ t

0

dτ

ih̄
P̂Ĥ1H̃1(τ )P̂, (A5)
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with

H̃1(τ ) = eĤ0τ/ih̄Ĥ1e−Ĥ0τ/ih̄. (A6)

This provides the final expression we will work with.
Note that (A5) is not Hermitian, which seems to be at odds

with the fact that we interpret it as an effective Hamiltonian. In
addition, (A5) is time dependent, even if the original Hamil-
tonian was time independent. However, in many situations,
it indeed occurs that (A5) becomes approximately Hermitian
and time independent under the same physical conditions that
allow us to split the Hilbert space into relevant and irrelevant
subspaces. We will see this in the examples that we treat next.

2. Elimination of |e1〉: Effective optomechanical interaction

Let us apply the general framework presented above to the
elimination of the first transition of the atom presented in the
main text, described by the Hamiltonian (1) that we reproduce
here for convenience,

Ĥ = h̄νâ†â + h̄�0σ̂
†
1 σ̂1 + h̄�1b̂†

1b̂1 − h̄(E∗b̂1 + E b̂†
1)

+ h̄g(x̂)(σ̂ †
1 b̂1 + σ̂1b̂†

1), (A7)

with g(x̂) = � sin(ηx̂ + 	). Assuming that |�0| �
�, |�1|, ν, |E |, with the atom starting in the ground state
|g〉, we expect the excited state |e1〉 to remain unpopulated.
Hence, the Hilbert space is naturally divided into a relevant
one described by the projector P̂ = |g〉〈g| and an irrelevant
one with projector Q̂ = 1 − |g〉〈g| = |e1〉〈e1|. Similarly, using
the notation of the previous section, the Hamiltonian is
naturally split into

Ĥ0 = h̄νâ†â + h̄�0σ̂
†
1 σ̂1 + h̄�1ĉ†

1ĉ1, (A8a)

Ĥ1 = h̄g(x̂)

[
σ̂

†
1

(
ĉ1 + E

�1

)
+ σ̂1

(
ĉ†

1 + E∗

�1

)]
, (A8b)

where, for convenience, we have defined the displaced pho-
tonic operator ĉ1 = b̂1 − E/�1 (hence this Hamiltonian de-
fers from the previous one by a constant shift |E |2/�1, irrele-
vant for the system dynamics). Taking into account that

eĤ0τ/ih̄σ̂1e−Ĥ0τ/ih̄ = ei�0τ σ̂1, (A9a)

eĤ0τ/ih̄âe−Ĥ0τ/ih̄ = eiντ â, (A9b)

eĤ0τ/ih̄ĉ1e−Ĥ0τ/ih̄ = ei�1τ ĉ1, (A9c)

we then have

H̃1(τ ) = eĤ0τ/ih̄Ĥ1e−Ĥ0τ/ih̄

= h̄g[x̃(τ )]e−i�0τ σ̂
†
1

(
ei�1τ ĉ1 + E

�1

)
+ H.c., (A10)

with x̃(τ ) = eiντ â + e−iντ â†. The second-order term of the
effective Hamiltonian (A5) then reads∫ t

0

dτ

ih̄
P̂Ĥ1H̃1(τ )P̂

= −ih̄g(x̂)

(
ĉ†

1 + E∗

�1

)

×
∫ t

0
dτg[x̃(τ )]e−i�0τ

(
ei�1τ ĉ1 + E

�1

)
|g〉〈g|

≈ −ih̄g2(x̂)

(
ĉ†

1 + E∗

�1

)(
ĉ1 + E

�1

) ∫ t

0
dτe−i�0τ |g〉〈g|

= h̄
g2(x̂)

�0
b̂†

1b̂1(e−i�0t − 1)|g〉〈g|, (A11)

where we have performed an intermediate approximation ne-
glecting the oscillations at frequencies ν and |�1| in the time
integral, compatible with the fact that the oscillations at |�0|
are much faster (this step is not critical, that is, we can perform
the required time integrations including all timescales, but it
simplifies the derivation enormously and leads to the same
final result in the considered regime). The time dependence of
(A11) can be neglected within a rotating-wave approximation
as long as |�0| � �.

Next we use η � 1 to expand the coupling term
as g2(x̂) = �2 sin2(ηx̂ + 	) ≈ �2[sin2(	) + ηx̂ sin(2	)/2].
Choosing 	 = π/4 as mentioned in the main text, we then
obtain the final effective Hamiltonian,

Ĥeff = h̄νâ†â + h̄

(
�1 − �2 + η�2x̂

2�0

)
b̂†

1b̂1

− h̄(E∗b̂1 + E b̂†
1), (A12)

which matches the optomechanical Hamiltonian (2) intro-
duced in the main text. Note that there we made the simplifi-
cation |�1| � �2/2|�0|, which is usually very well satisfied.

3. Elimination of |e2〉: Effective cross-Kerr interaction

We now apply the method to the second transition of the
ion. The corresponding Hamiltonian is described by (7), that
is,

Ĥ = h̄νâ†â + h̄�2b̂†
2b̂2 + h̄� cos(ηx̂)(σ̂ †

2 b̂2 + σ̂2b̂†
2). (A13)

In this case, we assume that ν � |�2| � �. Hence, for
an atom starting in the ground state |g〉, we again expect
the excited state |e2〉 to remain unpopulated. Therefore, the
projector onto the relevant subspace again reads P̂ = |g〉〈g|,
so that Q̂ = |e2〉〈e2|. We now split the Hamiltonian into

Ĥ0 = h̄νâ†â + h̄�2b̂†
2b̂2, (A14a)

Ĥ1 = h̄� cos(ηx̂)(σ̂ †
2 b̂2 + σ̂2b̂†

2). (A14b)

Taking into account that

eĤ0τ/ih̄σ̂2e−Ĥ0τ/ih̄ = σ̂2, (A15a)

eĤ0τ/ih̄âe−Ĥ0τ/ih̄ = eiντ â, (A15b)

eĤ0τ/ih̄b̂2e−Ĥ0τ/ih̄ = ei�2τ b̂2, (A15c)

we then have

H̃1(τ ) = eĤ0τ/ih̄Ĥ1e−Ĥ0τ/ih̄

= h̄� cos[ηx̃(τ )]ei�2τ σ̂
†
2 b̂2 + H.c. (A16)

Before proceeding, it is now convenient to use the η � 1
expansion,

cos[ηx̃(τ )] ≈ 1−η2x̃2(τ )/2

≈ 1−η2â†â − η2(e2iντ â2 + e−2iντ â†2)/2, (A17)
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so that the second-order term of the effective Hamiltonian
(A5) can be written as

∫ t

0

dτ

ih̄
P̂Ĥ1H̃1(τ )P̂

= −ih̄�2 cos(ηx̂)b̂†
2b̂2

∫ t

0
dτ cos[ηx̃(τ )]ei�2τ |g〉〈g|

≈ h̄�2 cos(ηx̂)b̂†
2b̂2

[
(1 − η2â†â)

1 − ei�̂2τ

�2

− η2

2

1 − e2iνt

�2 + 2ν
â2 − η2

2

1 − e2iνt

�2 − 2ν
â†2

]
|g〉〈g|

≈ h̄
�2

�2
b̂†

2b̂2(1 − η2â†â)2|g〉〈g|, (A18)

where, in the last approximation, we have made use of the
regime ν � |�2| � �, which allows us to neglect all terms
except the one presented at the end. Combining this with the
zeroth-order term, and keeping terms up to second order in η,
we obtain the effective Hamiltonian,

Ĥeff = h̄νâ†â + h̄�2

(
1 + �2

�2
2

)
b̂†

1b̂1 − h̄
2η2�2

�2
b̂†

2b̂2â†â,

(A19)

which matches the cross-Kerr Hamiltonian (8) intro-
duced in the main text, once �2/�2

2 is neglected in the
parentheses.

APPENDIX B: LINEARIZATION OF THE
OPTOMECHANICAL INTERACTION

In this Appendix, we explain in detail the process of
linearizing the master equation (3), which we reproduce here
for convenience,

d ρ̂

dt
=

[
ĤOM

ih̄
, ρ̂

]
+ γDb1 [ρ̂] + �Da[ρ̂], (B1)

with

ĤOM

h̄
= νâ†â + [�1 − g0x̂]b̂†

1b̂1 − (E∗b̂1 + E b̂†
1), (B2a)

DJ [ρ̂] = 2Ĵρ̂Ĵ† − Ĵ†Ĵρ̂ − ρ̂Ĵ†Ĵ. (B2b)

1. The classical limit

Linearization consists in considering small quantum fluctu-
ations around the classical state of the system. Hence, we first
consider here the classical limit, which in this case is obtained
by assuming that the state is a product of coherent states for
both modes: |α〉 ⊗ |β〉, where â|α〉 = α|α〉 and b̂1|β〉 = β|β〉.
The master equation can then be turned into an evolution
equation for the coherent amplitudes α(t ) and β(t ). Let us
find such equation.

In order to do this, it is convenient to first note that the
evolution equation of the expectation value of any operator Â
can be written as

d〈Â〉
dt

= tr

{
Â

d ρ̂

dt

}
= 1

ih̄
〈[Â, ĤOM]〉 + γ 〈[b̂†

1, Â]b̂1 + b̂†
1[Â, b̂1]〉

+�〈[â†, Â]â + â†[Â, â]〉. (B3)

Applying this expression to the operators â and b̂1, and using
the fact that coherent states are their eigenstates, we easily find
the evolution equations,

α̇ = −(� + iν)α + ig0|β|2, (B4a)

β̇ = −[γ + i�1 − ig0(α + α∗)]β + iE . (B4b)

These evolution equations possess stationary states (α̇ = 0 =
β̇) defined by

ᾱ = g0|β̄|2/(ν − i�) ≈ g0|β̄|2/ν, (B5a)

β̄ = E/[�1 − g0(ᾱ + ᾱ∗) − iγ ] ≈ E/ν, (B5b)

where in the last step we have made use of the regime �1 =
ν � max{g0|β̄|, γ , �} that we showed in the main text to
be required for an appropriate beam-splitter operation. This
solution must be stable against perturbations in order for
linearization to work. Writing α(t ) = ᾱ + δα(t ) and β(t ) =
β̄ + δβ(t ) in (B4), and keeping terms to first order in the
fluctuations, we get

d

dt

⎛
⎜⎜⎝

δα

δα∗

δβ

δβ∗

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−� − iν 0 ig0β̄
∗ ig0β̄

0 −� + iν −ig0β̄
∗ −ig0β̄

ig0β̄ ig0β̄ −γ − i�1 + 2ig0Re{ᾱ} 0
−ig0β̄

∗ −ig0β̄
∗ 0 −γ + i�1 − 2ig0Re{ᾱ}

⎞
⎟⎟⎠

⎛
⎜⎜⎝

δα

δα∗

δβ

δβ∗

⎞
⎟⎟⎠

≈

⎛
⎜⎜⎝

−� − iν 0 ig0β̄
∗ ig0β̄

0 −� + iν −ig0β̄
∗ −ig0β̄

ig0β̄ ig0β̄ −γ − iν 0
−ig0β̄

∗ −ig0β̄
∗ 0 −γ + iν

⎞
⎟⎟⎠

︸ ︷︷ ︸
M

⎛
⎜⎜⎝

δα

δα∗

δβ

δβ∗

⎞
⎟⎟⎠, (B6)
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where in the last step we have made use of the regime �1 =
ν � g0|β̄| and (B5). The solution will be stable whenever the
fluctuations decay towards zero, which in turn happens only
if the eigenvalues of M, known as the linear stability matrix,
have all negative real part. This is clearly the case for g0 = 0.
On the other hand, the terms proportional to g0|β̄| � ν are
just a small perturbation which is readily shown to not be able
to make the system unstable. Hence, in conclusion, under our
operating conditions, it is ensured that the stationary solution
(B5) is stable.

2. Linearization of quantum fluctuations

In order to introduce the linearized approximation for
quantum fluctuations, we move to a picture displaced to the
classical steady state presented above. Defining the displace-
ment D̂(ᾱ, β̄ ) = exp(ᾱâ + β̄b̂1 − H.c.) which transforms the
bosonic operators as D̂†âD̂ = â + ᾱ and D̂†b̂1D̂ = b̂1 + β̄,
the transformed state ρ̃ = D̂†ρ̂D̂ is easily shown to evolve
according to the master equation

dρ̃

dt
=

[
H̃

ih̄
, ρ̃

]
+ γDb1 [ρ̃] + �Da[ρ̃], (B7)

with

H̃

h̄
= νâ†â + �̃1b̂†

1b̂1 − g0x̂(β̄b̂†
1 + β̄∗b̂1 + b̂†

1b̂1), (B8)

with �̃1 = �1 − g0(ᾱ + ᾱ∗). In this picture, the optomechan-
ical interaction has a different form. It contains the bilinear
term g0x̂(β̄b̂†

1 + β̄∗b̂1) that we introduced in the text, in addi-
tion to the original term g0x̂b̂†

1b̂1. It is clear that the latter will
be negligible whenever |β̄|2 � 〈b̂†

1b̂1〉. But there is one more
way in which it can become negligible: since x̂ oscillates at
frequency ν, the rotating-wave approximation will suppress
it whenever ν � g0〈b̂†

1b̂1〉1/2. Under any of these conditions,
the Hamiltonian can then be approximated by only its bilinear
term, as we provided in (5) in the main text. Moreover,
working in the regime �1 = ν � max{g0|β̄|, γ , �} (required
for a proper beam-splitter operation) allowed us to made the
approximation �̃1 ≈ �1 in the main text.

APPENDIX C: EFFECT OF PARAMETER FLUCTUATIONS

Here we explain in detail how we have analyzed the effect
of parameter fluctuations in our protocol. Note that in order to
simplify the expressions and derivations, here we use different
conventions as compared to the main text. In particular, we use
a different sign convention for the beam-splitter operation, and
we start from a state with N photons instead of N phonons.
Of course, none of these choices affects the final conclusion.

The basic idea is that instead of considering ideal opera-
tions, we consider a beam splitter B̂λ = exp[λ(âb̂†

1 − â†b̂1)]
and a controlled-θ Ĉθ = exp(iθ b̂†

2b̂2â†â) with fluctuating pa-
rameters λ = π/4 + δλ and θ = π + δθ , where both fluctu-
ations δλ and δθ are taken as Gaussian stochastic processes.
Denoting either of them by δz (hence, z = λ, θ ), we then have

δzn =
{

0 for n ∈ odd

(n − 1)!! V n/2
z for n ∈ even,

(C1)

where Vz is the variance (square of the standard deviation)
of the fluctuations, and in the following we denote stochastic
averages by an overbar.

As a proof of principle, we then evaluate the (stochastically
averaged) fidelity between the ideal and fluctuating states. In
order to simplify the calculation, we will consider the states
right after the controlled-θ operation instead of at the very end
of the protocol. In any case, this will give us a fair idea of the
sensitivity of the protocol to parameter fluctuations. Consider
then the state at this stage of the protocol, which can be written
as

|	λ,θ 〉 = 1√
2

Ĉθ B̂λ|N〉1|0〉a(|0〉2 + |1〉2)

= 1√
2

(|ψλ〉1a|0〉2 + P̂θ |ψλ〉1a|1〉2), (C2)

where P̂θ = eiθ â†â and

|ψλ〉1a = B̂λ|N〉1|0〉a

=
N∑

k=0

√(
N
k

)
sink λ cosN−k λ|N − k〉1|k〉a. (C3)

The overlap between this state and the ideal one |	π/4,π 〉 is
then given by

〈	π/4,π |	λ,θ 〉 = 1
2 (〈ψπ/4|ψλ〉1a + 〈ψπ/4|P̂δθ |ψλ〉1a), (C4)

where we have used P̂†
π P̂θ = P̂δθ . Using (C3), these two terms

are easily rewritten as

〈ψπ/4|ψλ〉1a =
N∑

k=0

1√
2N

(
N
k

)
sink λ cosN−k λ, (C5a)

〈ψπ/4|P̂δθ |ψλ〉1a =
N∑

k=0

1√
2N

(
N
k

)
eikδθ sink λ cosN−k λ,

(C5b)

so that

〈	π/4,π |	λ,θ 〉 =
N∑

k=0

1 + eikδθ

2
√

2N

(
N
k

)
sink λ cosN−k λ. (C6)

On the other hand, the average fidelity can be evaluated as

F = |〈	π/4,π |	λ,θ 〉|, (C7)

that is, the average of the absolute value of the overlap. Let us
then now perform the required stochastic averages. First, let
us note that

sinn λ cosm λ = 1

2n+min

n∑
l=0

m∑
l ′=0

(−1)l

(
n
l

)(
m
l ′

)

×eiπ (n+m−2l−2l ′ )/4e−(n+m−2l−2l ′ )2Vλ/2, (C8)
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FIG. 3. Fidelity of the state generated by our protocol as a function of the NOON size N , and for different values of the standard deviation
of the beam splitter and controlled-π parameters: 1% (blue), 2% (orange), 3% (yellow), 5% (green), 15% (gray), and 50% (purple), from top
to bottom.

which are expressions that we prove at the end of the section. Hence, we can write

〈	π/4,π |	λ,θ 〉 =
N∑

k=0

1

2
√

2N

(
N
k

)
(1 + eikδθ )sink λ cosN−k λ

=
N∑

k=0

1

2
√

2N

(
N
k

)(
1 + e−k2Vθ /2) 1

2N ik

k∑
l=0

N−k∑
l ′=0

(−1)l

(
k
l

)(
N − k

l ′

)
eiπ (N−2l−2l ′ )/4e−(N−2l−2l ′ )2Vλ/2

=
N∑

k=0

k∑
l=0

N−k∑
l ′=0

(−1)l

21+3N/2ik

(
N
k

)(
k
l

)(
N − k

l ′

)
eiπ (N−2l−2l ′ )/4

(
1 + e−k2Vθ /2

)
e−(N−2l−2l ′ )2Vλ/2, (C9)

which is an expression that can be evaluated very efficiently by any computer.

In Fig. 3, we plot the fidelity (C7) as a function of N for
different values of the standard deviation of the parameters.
As mentioned in the main text, for 1% standard deviation,
the fidelity stays above 90% for values as large as N = 40.
Note that the standard deviation is the square root of the
variance and, hence, M% means Vθ = (10−2Mπ )2 and Vλ =
(10−2Mπ/4)2.

Let us now prove expressions (C8). In the case of the first
one, we simply expand the exponential in a Taylor series and
use (C1), leading to

einz =
∞∑

k=0

1

k!
(in)kzk =

∞∑
l=0

(2l − 1)!!

(2l )!
(in)2lV l

z

=
∞∑

l=0

1

2l l!
(−n2)lV l

z = e−n2Vz/2. (C10)

As for the second expression, it is also easy to prove by writing
the trigonometric functions in terms of complex exponentials
and using the previous expression:

sinn λ cosm λ = 1

2n+min
(eiλ − e−iλ)n(eiλ + e−iλ)m

= 1

2n+min

n∑
l=0

m∑
l ′=0

(−1)l

(
n
l

)(
m
l ′

)
ei(n+m−2l−2l ′ )λ

= 1

2n+min

n∑
l=0

m∑
l ′=0

(−1)l

(
n
l

)(
m
l ′

)

× eiπ (n+m−2l−2l ′ )/4e−(n+m−2l−2l ′ )2Vλ/2. (C11)
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M. D. Lukin, Phys. Rev. Lett. 110, 133001 (2013).

[29] M. A. Norcia, A. W. Young, and A. M. Kaufman, Phys. Rev. X
8, 041054 (2018).

[30] A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall,
M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A. Regal,
Science 345, 306 (2014).

[31] A. M. Kaufman, B. J. Lester, and C. A. Regal, Phys. Rev. X 2,
041014 (2012).

[32] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A.
Browaeys, Science 354, 1021 (2016).

[33] A. Browaeys, D. Barredo, and T. Lahaye, J. Phys. B: At., Mol.
Opt. Phys. 49, 152001 (2016).

[34] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T.
Lahaye, and A. Browaeys, Nature (London) 534, 667 (2016).

[35] S. K. Dutta, J. R. Guest, D. Feldbaum, A. Walz-Flannigan, and
G. Raithel, Phys. Rev. Lett. 85, 5551 (2000).

[36] K. C. Younge, B. Knuffman, S. E. Anderson, and G. Raithel,
Phys. Rev. Lett. 104, 173001 (2010).

[37] S. E. Anderson, K. C. Younge, and G. Raithel, Phys. Rev. Lett.
107, 263001 (2011).

[38] K. C. Younge, S. E. Anderson, and G. Raithel, New J. Phys. 12,
023031 (2010).

[39] S. Zhang, F. Robicheaux, and M. Saffman, Phys. Rev. A 84,
043408 (2011).

[40] L. Li, Y. O. Dudin, and A. Kuzmich, Nature (London) 498, 466
(2013).

[41] D. Barredo, V. Lienhard, P. Scholl, S. de Léséleuc, T. Boulier,
A. Browaeys, and T. Lahaye, arXiv:1908.00853.

[42] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod.
Phys. 75, 281 (2003).

[43] D. J. Wineland, Nobel Lecture (2012), www.nobelprize.org.
[44] C. C. Gerry and R. A. Campos, Phys. Rev. A 64, 063814 (2001).
[45] D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J.

Wineland, Phys. Rev. Lett. 76, 1796 (1996).
[46] D. Kienzler, H.-Y. Lo, V. Negnevitsky, C. Flühmann, M.

Marinelli, and J. P. Home, Phys. Rev. Lett. 119, 033602 (2017).
[47] M. Um, J. Zhang, D. Lv, Y. Lu, S. An, J.-N. Zhang, H. Nha,

M. S. Kim, and K. Kim, Nat. Commun. 7, 11410 (2016).
[48] A. Ben-Kish, B. DeMarco, V. Meyer, M. Rowe, J. Britton,

W. M. Itano, B. M. Jelenković, C. Langer, D. Leibfried, T.
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