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We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to
engineer a single-atom laser that emits light into a nonclassical state. Our scheme relies on the dressing of
the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative
decay of the first qubit becomes an effective incoherent pumping mechanism that injects energy into the
system, hence turning dissipation to our advantage. A second, auxiliary qubit is used to shape the decay
within the cavity, in such a way that lasing occurs in a squeezed basis of the cavity mode. We characterize
the system both by mean-field theory and exact calculations. Our work may find applications in the
generation of squeezing and entanglement in circuit QED, as well as in the study of dissipative few- and
many-body phase transitions.
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Introduction.—Recent progress in experimental solid-
state quantum optics has led to exciting possibilities for the
control of quantum states of the electromagnetic field.
Circuit quantum electrodynamics (QED) [1,2] is one of
such new platforms and can be seen as the microwave
counterpart of cavity QED, with optical cavities and atoms
replaced, respectively, by linear and nonlinear supercon-
ducting circuits. The latter are usually referred to as
“artificial atoms” or “superconducting qubits.” In circuit
QED single emitters are placed permanently, and different
quantum-optical elements can be combined by fabrication.
The field emitted by those devices can be integrated into
circuits in the form of itinerant fields and, hence, new ideas
for generating quantum photonic states are of major
importance for applications of this emerging field.
In recent years various experiments have shown that

single-qubit lasing is possible in this scenario [3,4], while at
the same time the generation of squeezed fields via
Josephson parametric amplifiers has taken a lot of attention
[5–7]. Here we propose a scheme that combines these two
physical scenarios, motivated by two main advantages that
circuit QED offers with respect to their optical counterparts.
(a) Superconducting qubits having frequencies within the
microwave range, the system parameters can be modulated
with rates and amplitudes comparable to their characteristic
energy, which opens the way to a versatile control of the
qubit-field couplings via periodic drivings [8], something
that in optical implementations typically involves Raman
transitions which rely on the atomic internal structure [9].
So far this has allowed for the observation of the dynamical
Casimir effect [10,11], as well as motivated proposals
for the simulation of the ultrastrong coupling regime of
quantum optics [12]. (b) Several cavities and dissipative
elements can be permanently coupled to single qubits.
Thus, they provide us with an ideal toolbox for engineering

dissipative processes [13] that are very challenging to
implement in atomic QED.
We exploit these advantages for the design of a lasing

dissipative phase transition in which light is emitted into a
squeezed state, that is, a nonclassical state in the sense of
Glauber [14,15]. In particular, we show the following. (i) A
periodic driving of the qubit energy is able to induce an
effective counterrotating-type interaction with the field,
which turns the qubit relaxation into an effective population
inversion mechanism, hence turning dissipation into some-
thing useful. This leads to single-atom lasing into a
classical, coherent state. (ii) A biperiodic driving allows
us to shape the qubit-field interaction such that photons are
emitted into a squeezed photonic mode. A mean-field
description of this problem allows us to predict a lasing
transition. Surprisingly, if decay occurs by normal cavity
leakage, dissipation still drives the system into a classical
lasing phase. (iii) An additional qubit can be used to induce
a cavity decay mechanism that cools it into a squeezed
vacuum [8,16]. The joint action of this cooling process and
the emission of light into a squeezed mode yields lasing
into a squeezed state. (iv) Our ideas can be implemented in
circuit QED setups with state-of-the-art experimental
parameters, thus leading to a scheme that goes beyond
single-atom lasing into coherent states in atomic [17] or
solid-state [18–22] systems.
In addition to applications related to bright sources of

squeezed or entangled light, the scalability of our scheme
paves the way to the study of dissipative phase transitions
in mesoscopic lattice QED systems [23] since many-qubit
extensions of our work [24] pose an intriguing many-body
problem where strongly correlated phenomena could be
analyzed.
Single artificial atom and cavity system.—As shown in

Fig. 1, we consider one mode of a cavity coupled to a qubit
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whose transition frequency is modulated in time. Such a
system is described by a time-dependent Hamiltonian
HðtÞ ¼ H0 þHint þHdðtÞ, with H0 ¼ ωa†aþ ϵσz=2,
Hint ¼ gðaþ a†Þσx, and HdðtÞ ¼

Pnd
j¼1Ωjηj cosðΩjtÞσz,

where we have set ℏ ¼ 1 and have assumed that the
modulation is multiperiodic. ω is the cavity frequency
and a the corresponding annihilation operator, σz;x are the
Pauli operators associated to the qubit with bare frequency
ε, and HdðtÞ describes nd periodic drivings with frequen-
cies Ωj and normalized amplitudes ηj.
Additionally, we consider two dissipative channels, one

describing the radiative decay of the qubit to an open
transmission line at rate γ and another for the cavity
losses at rate κ. We will employ the notation LfO;Γg½ρ& ¼
Γð2OρO† −O†Oρ − ρO†OÞ, such that the master equation
governing the evolution of the system’s state ρ reads

_ρ ¼ −i½HðtÞ; ρ& þ Lfσ;γg½ρ& þ Lfa;κg½ρ&: ð1Þ

We will be considering a far-off resonant and weak
coupling regime (g ≪ ε;ω; jε − ωj), such that in the
absence of driving the steady state corresponds to the
trivial photon vacuum. However, we show below that by
switching on an appropriate modulation HdðtÞ, energy can
be injected into the system, driving it into a lasing regime.
Shaping the interaction.—Consider a bichromatic

driving (nd ¼ 2) modulating at the upper and lower side-
bands, Ω1;2 ¼ ε∓ω; see Fig. 1. Moving to an interaction
picture with respect to H0 þHdðtÞ, we show in the
Supplemental Material [27] that the system dynamics is
well captured by the time-independent Hamiltonian ~H ¼
−~gðua† þ vaÞσ† þ H:c; we have defined the parameters
u ¼ J0ð2η1ÞJ1ð2η2Þ=N and v ¼ J0ð2η2ÞJ1ð2η1Þ=N, which
satisfy the Bogoliubov relation ju2 − v2j ¼ 1 with the
definition N2 ¼ jJ20ð2η1ÞJ21ð2η2Þ − J20ð2η2ÞJ21ð2η1Þj being
JmðzÞ the Bessel function of order m, as well as a
renormalized coupling ~g ¼ gN. Note that we are describing
here the renormalization of the qubit-field interaction by

photon-assisted tunneling in a nonperturbative regime with
respect to the modulation amplitudes [28].
Hence, we see that a biperiodic modulation allows us to

tune the relative weights of the rotating and counterrotating
terms of the qubit-field interaction, which we exploit in the
following to generate lasing to coherent or squeezed states.
Single-qubit lasing.—Consider first the simple case

η1 ¼ 0, in which we drive the qubit with a single frequency
(u ¼ 1; v ¼ 0). In this case the qubit is coupled to the
cavity mode through a counterrotating-type interaction,
so that the master equation of the system reads _ρ ¼
i~g½a†σ† þ aσ; ρ& þ Lfσ;γg½ρ& þ Lfa;κg½ρ&. By using the
transformation σ↔σ† (a permutation of the qubit basis,
irrelevant for the field dynamics), we see that the qubit
relaxation is turned into an effective incoherent pump of its
population together with a corotating coupling to the field.
This leads to our first result: the periodic driving induces a
lasing mechanism. This equation has been studied in the
past [29–32], and mean-field theory predicts a lasing
transition that depends on the cooperativity parameter
~C ¼ ~g2=γκ. If ~C ≫ 1 and the inversion rate is much faster
than the cavity losses, γ ≫ κ, the steady state of the cavity
consists in a coherent state with a random phase.
Engineering nonclassical lasing.—Let us now consider

the situation in which both driving amplitudes η1;2 are
nonzero, so that the qubit is coupled to a squeezed mode
A ¼ uaþ va† instead of the original cavity mode a.
Choosing juj > jvj, the interaction takes the form
~H ¼ −~gðA†σ† þ AσÞ. This seems to suggest lasing into
the squeezed mode A, and thus emission of a bright
squeezed state of light. However, we show below that a
careful study of the master equation shows that this is not
the case since losses still take place by photon decay in the
original cavity mode basis, a, through the term La;κ in
Eq. (1). We prove in the following that in order to achieve
lasing in the squeezed mode, A, cavity decay has to occur
on that basis. We thus introduce a second, auxiliary qubit
that will be used to control the photon decay in the cavity,

FIG. 1 (color online). (Left panel) Circuit QED architecture of the system: A superconducting qubit (transmon [25,26]) is capacitively
coupled to an LC resonator of frequency ω, while its transition frequency between the ground jgi and excited jei states is modulated via
the flux generated by an external circuit; the qubit is coupled to an open transmission line to which it can radiate excitations, while the
resonator experiences leakage to a readout circuit. (Right panel) A biperiodic modulation with frequencies matching the lower and upper
sidebands of the qubit-resonator system allows us to independently tune the relative amplitudes of the rotating and counterrotating terms
of the qubit-field interaction.
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following the ideas introduced in [8]. We assume that the
auxiliary qubit is controlled by the same driving parame-
ters, except for an exchange of the amplitudes η1↔η2
which makes juj < jvj, such that one effectively generates
the rotating-type interaction ~H0 ¼ −~g0ðA†σ0 þ Aσ0†Þ, where
σ0 and ~g0 correspond to operators and couplings of the
auxiliary qubit, respectively. The latter has a decay rate γ0,
such that in the limit γ0 ≫ ~g0

ffiffiffiffiffiffiffiffiffiffiffi
ha†ai

p
, it can be adiabatically

eliminated. This way, we obtain the master equation,

_ρ ¼ i~g½A†σ† þ Aσ; ρ& þ Lfσ;γg½ρ& þ Lfa;κg½ρ& þ LfA;κ ~C0g½ρ&:

ð2Þ

If condition ~C0 ¼ ~g02=γ0κ ≫ v2 is met, the effective dis-
sipator in the squeezed mode LfA;κ ~C0g dominates the natural
cavity dissipation Lfa;κg and the system behaves as a laser
for the squeezed mode A, and hence as a nonclassical laser
for the original cavity mode a.
In order to get an approximate description of the steady

state predicted by this master equation, we apply a mean-
field approximation in which ρ is assumed to be separable
in the qubit-field subspaces [30]. Defining the expectation
values F ¼ hAi, S ¼ ihσi', and D ¼ −hσzi, we get the
nonlinear system of equations

_F ¼ −κeffF þ ~gS; _S ¼ −γSþ ~gDF;

_D ¼ −2~gðSF' þ S'FÞ − 2γðD − 1Þ; ð3Þ

with κeff ¼ κð1þ ~C0Þ, which are the so-called Maxwell-
Bloch equations well known in laser physics [29,30]. The
steady-state solution of these equations predicts a lasing
transition depending on the cooperativity parameter
~C ¼ ~g2=γκeff , which separates a trivial phase with F̄ ¼ S̄ ¼
0 and D̄ ¼ 1 (bar indicates steady-state values within the
mean-field approximation) for ~C < 1, from a bright phase

when ~C > 1 in which F̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γð ~C − 1Þ=2κeff ~C

q
expðiθÞ,

S̄ ¼ ~g F̄ = ~Cγ, and D̄ ¼ 1= ~C, where θ is an arbitrary phase
not fixed by the equations. Note that deep into the lasing
regime ( ~C → ∞) the number of (mean-field) photons
depends solely on the ratio κeff=γ.
The mean-field approximation also allows us to estimate

the reduced steady state of the field ρf ¼ trqubitfρg. For this,
we just use the fact that within this approximation the state
is separable in the qubit-field subspaces, so that taking the
partial trace of (2), we get a Gaussian master equation with
an analytic stationary solution; in particular, using the
parametrization fu ¼ cosh r; v ¼ sinh rg with r ∈ ½0;∞&
(we assume from now on that u; v > 0 without a loss of
generality), and taking into account that the mean-field
solution assumes spontaneous symmetry breaking, whereas
in reality the statistics over many realizations would show a
random phase θ, we show in the Supplemental Material
[27,33] that our mean-field ansatz is given by the mixture

ρ̄fðjF̄j; ~C0; rÞ ¼
Z

2π

0

dθ
2π

DAðF̄ÞSAð~rÞρth;Að ~nÞS†Að~rÞD
†
AðF̄Þ;

ð4Þ

where we have defined the displacement and squeezing
operators DAðαÞ ¼ expðαA† − α'AÞ and SAðrÞ ¼
exp½rðA†2 − A2Þ=2&, respectively, and the thermal state
ρth;AðNÞ ¼

P∞
n¼0½Nn=ð1þ NÞ1þn&jniAhnj, jniA referring

to the Fock states associated to mode A, and where
4~r ¼ lnf½expð2rÞ þ ~C0&=½expð−2rÞ þ ~C0&g and 2~n ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½expð2rÞ þ ~C0&½expð−2rÞ þ ~C0&=ð1þ ~C0Þ2

q
− 1.

This mean-field state is a generalization of the usual
coherent-state mixture found in the laser [29,31,32]; below,
we discuss how well it describes the system compared
to the exact steady state, but, before doing so, let us
consider two physically relevant limits. First, the limit
~C0 ≫ expð2rÞ, in which ~r ¼ 0 and ~n ¼ 0, so that the ansatz
can be written as

ρ̄ð1Þf ¼
Z

2π

0

dθ
2π

DAðF̄Þj0iAh0jD
†
AðF̄Þ

¼
Z

2π

0

dθ
2π

S†aðrÞDaðF̄Þj0iah0jD
†
aðF̄ÞSaðrÞ; ð5Þ

we see that, as expected, in this limit the state is just a
balanced mixture of all the coherent states of mode A with
the same mean-field amplitude jF̄j, which is the ideal laser
state. Hence, this is the limit in which our system works as a
nonclassical laser, since this state corresponds to a mixture
of squeezed coherent states in the basis of the original
cavity mode. The second limit we want to consider is
~C0 → 0, that is, the limit in which we do not add a second
qubit to engineer dissipation in the squeezed mode A. In
this case, ~n ¼ 0 again, but ~r ¼ r, so that the mean-field
ansatz can be written as

ρ̄ð2Þf ¼
Z

2π

0

dθ
2π

DAðF̄ÞSAðrÞj0iAh0jS
†
AðrÞD

†
AðF̄Þ

¼
Z

2π

0

dθ
2π

DaðuF̄ − vF̄'Þj0iah0jD
†
aðuF̄ − vF̄'Þ; ð6Þ

this shows that without the help of the second qubit, the
lasing process is still classical from the point of view of the
original mode a, that is, the state is a mixture of coherent
states.
Our laser works in a mesoscopic photon number regime

in which the validity of the mean-field solution must be
handled with care, and hence we proceed to study numeri-
cally the exact steady state of (2). In the solid blue curve of
Fig. 2(a), we show the fidelity between this exact steady
state and the mean-field ansatz (4) as we move up into the
lasing transition for 90% of quadrature squeezing
(r ≈ 1.15), κeff=γ ¼ 0.02, and ~C0 ¼ 10 (similar curves
are found for other values of ~C0). It can be appreciated
how the mean-field ansatz adapts very well to the exact
steady state above the lasing transition. In addition, in the
rest of the curves of Fig. 2(a), we show the fidelity between
the ansatz and the exact steady state of the system when the
second qubit is not adiabatically eliminated, for different
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values of ~g0=γ0; we can appreciate that ~g0=γ0 ≲ 0.03 is
needed in order to achieve the lasing conditions we seek.
In order to better characterize the state in the different

regimes, Figs. 2(b)–2(e) show the Wigner functions cor-
responding to the limiting situations ~C0 ≪ 1 and ~C0 ≫ v,
characterized by states (5) and (6), respectively—see
[27,33–36] for the details of their evaluation. In particular,
in Figs. 2(d) and 2(e) we plot these Wigner functions in the
phase space of the original cavity mode a, which we
propose to reconstruct with a tomography experiment along
the lines of [6,37]. Since all of our Wigner functions are
positive everywhere in the phase space formed by the
quadratures xc ¼ c† þ c and pc ¼ iðc† − cÞ, where c ¼ A
or a, they can be directly interpreted as the joint probability
distribution describing measurements of these observables.
Let us finally remark that it can be proved that the

addition of dephasing (at rate γz) in the qubits doesn’t have
any significant effect on the results presented above, except
for decreasing the cooperativity of the corresponding qubit
by a factor (1þ 4γz=γ). Consequently, we have omitted
such processes to ease the presentation.
Physical implementation.—In order to show the feasibil-

ity of our scheme, let us give some concrete parameters for
the circuit QED architecture sketched in Fig. 1. We take
ε=2π ¼ 10 GHz, ω=2π ¼ 4.5 GHz, and g=2π ¼ 40 MHz,
which are common parameters in state-of-the-art super-
conducting circuits [37]. In addition, a relatively fast
radiative decay rate γ=2π ¼ 15 MHz is induced in the qubit,
while theLCresonator has adamping rate κ=2π ¼ 30 kHz to
the readout circuit. As for the driving, let us fix η2 ¼ 0.2,
corresponding to a modulation amplitude of Ω2η2 ¼
2.9 GHz, which is quite reasonable. Single-qubit lasing
with cooperativities and photon numbers up to 140 and 250,

respectively, can be achievedwith these parameters. In order
to generate the squeezed lasing proposed in the Letter, one
could include a second qubit with g0=2π ¼ 70 MHz and a
strong radiative decay γ0=2π ¼ 250 MHz, conditions in
which its adiabatic elimination should be valid. Having
chosena small normalizedamplitudeη2,wecanapproximate
tanh r ¼ v=u ≈ η1=η2, so that 90% of quadrature squeezing
(r ≈ 1.15) is obtained by choosing η1 ≈ 0.16; taking into
account that the renormalized coupling can be approximated
by ~g ≈ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η22 − η21

p
(and similarly for ~g0), one can then get up

to cooperativities ~C ¼ 5 and ~C0 ¼ 10, enough to see the
phenomena introduced in the Letter.
Conclusions and Outlook.—We have shown how to

engineer a single-atom laser that emits light into a non-
classical state in a circuit QED scenario. Our scheme relies
only on the modulation of the transition frequencies of two
qubits with periodic drivings and exploits their radiative
decay to our advantage: for one qubit it is turned into the
effective population inversion mechanism needed for lasing,
while for the other it allows engineering the cavity dis-
sipation such that the lasing process becomes nonclassical.
The generalization of our ideas to the generation of multi-
mode squeezed and entangled states is straightforward,
while the extension of our work to many qubits would
allow studying strongly correlated phenomena with circuit
QED setups, providing the exciting possibility of preparing
nontrivial many-body states dissipatively [38–42]. In addi-
tion to this, working in the GHz range, where stable phase-
locked continuous-wave sources exist, our system opens a
way to analyzing the coherence of the lasing process and its
underlying spontaneous symmetry breaking mechanism,
questions upon which there are still open debates among
the quantum optics community [43–45].

FIG. 2 (color online). (a) Fidelity between the mean-field ansatz (4) and the exact steady state of the system, as a function of the
cooperativity ~C, for κeff=γ ¼ 0.02, r ≈ 1.15 (90% of quadrature squeezing), and ~C0 ¼ 10. The solid blue curve corresponds to the exact
steady state of Eq. (2), while in the other curves the effect of the second qubit is considered for ~g0=γ0 ¼ 0.02 (dashed red line), 0.05
(dotted yellow line), and 0.07 (dash-dotted green line); the inset shows the fidelity as a function of the ratio ~g0=γ0, fixing the parameters as
in the main plot, plus ~C ¼ 5. We also show density plots of the Wigner functions corresponding to the steady state of (2) for ~C ¼ 5 and
κeff=γ ¼ 0.02, and two values of ~C0, 10 (b),(c) and 0.01 (d),(e), in which the states are well approximated by (5) and (6), respectively.
Note that since (b) approximately corresponds to a mixture of coherent states of equal amplitude, its width can be used as the unit for
shot noise, thus making apparent the squeezing in (c).
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Carlos Navarrete-Benlloch,1 Juan José Garćıa-Ripoll,2 and Diego Porras3, 4

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-strasse 1, 85748 Garching, Germany
2Instituto de F́ısica Fundamental, IFF-CSIC, Serrano 113-bis, Madrid E-28006, Spain

3Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN19QH, UK
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In this supplemental material we o↵er a detailed
derivation of three points of the main Letter: (i) the time-
independent Hamiltonian which captures the dynamics
induced by the full time-dependent Hamiltonian model-
ing the driven qubit-field system; (ii) the solution of the
field’s steady-state within the mean-field approximation;
and (iii) the construction of the Wigner functions from
the density matrices obtained numerically in the Fock
basis.

EFFECTIVE TIME-INDEPENDENT
HAMILTONIAN

In the main Letter, we claimed that the dynamics in-
duced by the time-dependent Hamiltonian H(t) = H0 +
Hint +Hd(t), with

H0 = !a†a+
"

2
�
z

, Hint = g(a+ a†)�
x

,

Hd(t) =
2X

j=1

⌦
j

⌘
j

cos(⌦
j

t)�
z

, (1)

is well captured by the time-independent one

H̃ = �g̃
�
ua† + va

�
�† +H.c., (2)

where g̃ is a renormalized coupling and the parameters u
and v satisfy the Bogoliubov relation |u2 � v2| = 1, pro-
vided that one works far from the strong-coupling regime
and o↵-resonance (!, ", |"�!| � g), and chooses the up-
per and lower sideband modulations ⌦1,2 = "⌥!. In this
first section of the supplemental material we prove this
statement rigorously.

To this aim, let us first move to the interaction picture
defined by the transformation operator

Uc(t) = exp


�iH0t� i

Z
t

0
d⌧Hd(⌧)

�
(3)

= exp

2

4�i!ta†a� i

0

@"t

2
+

2X

j=1

⌘
j

sin⌦
j

t

1

A�
z

3

5 ,

which transforms the state of the qubit-field system as
⇢ ! ⇢I = U†

c ⇢Uc, so that it evolves now according to the

Hamiltonian

HI = U †
c [H0 +Hd(t)]Uc �H0 �Hd(t) (4)

= g

8
<

:a� exp

2

4�i

0

@!t+ "t+
2X

j=1

2⌘
j

sin⌦
j

t

1

A

3

5

+a�† exp

2

4�i

0

@!t� "t�
2X

j=1

2⌘
j

sin⌦
j

t

1

A

3

5

9
=

;+H.c.,

where we have used

U†
c aUc = a exp(�i!t), (5)

U †
c�Uc = � exp

2

4�i

0

@"t+
2X

j=1

2⌘
j

sin⌦
j

t

1

A

3

5 . (6)

The next step in the derivation consists in using the
fact that the sine function is the generator of the Bessel
functions, what means that

exp(2i⌘
j

sin⌦
j

t) =
+1X

n=�1
J
n

(2⌘
j

) exp(in⌦
j

t), (7)

leading to the Hamiltonian

HI = ~g
⇥
↵(t)a�† + �(t)a�

⇤
+H.c., (8)

with

↵(t) =
+1X

n1,n2=�1
J
n1(2⌘1)Jn2(2⌘2)e

�i(!�"�n1⌦1�n2⌦2)t,

(9a)

�(t) =
+1X

n1,n2=�1
J
n1(2⌘1)Jn2(2⌘2)e

�i(!+"+n1⌦1+n2⌦2)t.

(9b)

This Hamiltonian has both rotating (a�†) and counter-
rotating (a�) terms; however, these terms will contribute
to the dynamics of the system only if some of the com-
plex exponentials appearing in the definition of ↵(t) and
�(t) vary slowly compared to g (rotating-wave approxi-
mation), that is, introducing ⌦1,2 = " ⌥ !, the rotating
term will contribute only for (m1,m2) such that

|(1 +m1 +m2)! � (1 +m1 �m2)"| ⌧ g, (10)
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while the counter-rotating term will enter the dynamics
only if

|(1� q1 + q2)! + (1 + q1 + q2)"| ⌧ g, (11)

for some combination (q1, q2). It is possible to find expo-
nentials which oscillate slow compared to g both in ↵(t)
and �(t). In particular, provided the no multi-photon
resonances are allowed within the coupling strength, that
is

|m"� n!| � g 8mn = 1, 2, ..., (12)

only one term of ↵(t) and another of �(t) survive, the
ones with (m1 = �1,m2 = 0) and (q1 = 0, q2 = �1),
respectively. Note however that it is enough that con-
dition (12) holds for small m and n, as if the multi-
photon resonance occurs only for large ones, only high
order Bessel functions kick in, and then the terms pre-
viously found are still the only ones which contribute
to ↵(t) and �(t) approximately. For example, for the
frequencies chosen in the Letter, "/2⇡ = 10GHz and
!/2⇡ = 4.5GHz, the first multi-photon resonance that
satisfies (10) is (m1 = 28,m2 = 11), which gives a neg-
ligible contribution to ↵(t) unless the modulation ampli-
tudes ⌘

j

are extremely large.
Under such conditions, the Hamiltonian (8) takes the

form

HI ⇡ g
⇥
J�1(2⌘1)J0(2⌘2)a+ J0(2⌘1)J�1(2⌘2)a

†⇤�†+H.c.;
(13)

now, using the property J�1(x) = �J1(x), and defining
the parameters

v =
J1(2⌘1)J0(2⌘2)p

|J2
1 (2⌘1)J

2
0 (2⌘2)� J2

0 (2⌘1)J
2
1 (2⌘2)|

, (14a)

u =
J0(2⌘1)J1(2⌘2)p

|J2
1 (2⌘1)J

2
0 (2⌘2)� J2

0 (2⌘1)J
2
1 (2⌘2)|

, (14b)

g̃ = g
q
|J2

1 (2⌘1)J
2
0 (2⌘2)� J2

0 (2⌘1)J
2
1 (2⌘2)|, (14c)

we obtain the Hamiltonian (2) as we wanted to prove.

GAUSSIAN-STATE SOLUTION TO THE
MEAN-FIELD EQUATION

In this section we find the stationary solution for the
state of the field within the mean-field approximation.
As explained in the Letter, the master equation of the
system (under adiabatic elimination of the second qubit)
is

⇢̇ = ig̃[A†�†+A�, ⇢]+L{�,�}[⇢]+L{a,}[⇢]+L{A,C̃

0}[⇢].

(15)
The mean-field approximation consists in assuming that
the state is separable in the qubit-field subspaces, and we

show in the main Letter that, defining the expectation
values F = hAi and S = ih�i⇤, these approximation pre-
dicts a lasing transition depending on the cooperativity
parameter C̃ = g̃2/�(1 + C̃ 0), which separates a trivial
phase with F̄ = S̄ = 0 (from now on the bar indicates
steady-state values within the mean-field approximation)
for C̃ < 1, from a bright phase when C̃ > 1 in which

F̄ =

s
�(C̃ � 1)

2(1 + C̃ 0)C̃
ei✓, S̄ =

g̃

C̃�
F̄ , (16)

where ✓ is an arbitrary phase not fixed by the equations.
In this case the mean-field approximation even allows us
to estimate the reduced steady state of the field ⇢f =
trqubit{⇢}. For this, we just use the fact that within this
approximation the state is separable in the qubit-field
subspaces, so that taking the partial trace of (15), and
using (16), we get

⇢̇f = (1 + C̃ 0)[F̄A† � F̄ ⇤A, ⇢f ] + L{a,1}[⇢f ] + L{A,C̃

0}[⇢f ],

(17)
with a = A cosh r � A† sinh r. Note that given any field
operator O, we can find the evolution equation of its
expectation value as

hȮi = tr{O⇢̇f} = (1 + C 0)h[O, F̄A† � F̄ ⇤A]i+ ha†[O, a]i
+h[a†, O]ai+ C̃ 0hA†[O,A]i+ C̃ 0h[A†, O]Ai. (18)

Now, since equation (17) is quadratic in annihilation
and creation operators (A,A†), its steady state ⇢̄f is
Gaussian, meaning that it is completely characterized by
its first and second moments [1]. In particular, using (18)
it is simple to find hAi = F̄ ,

hA†Ai = |F̄ |2 + sinh2 r

1 + C̃ 0
, (19a)

hA2i = F̄ 2 +
sinh 2r

2(1 + C̃ 0)
. (19b)

Defining the quadratures x
A

= A† +A and p
A

= i(A† �
A), the vector operator r

A

= col(x
A

, p
A

), and the corre-
sponding mean vector d

A

= hr
A

i and covariance matrix
V
A

with elements V
A,jk

= hr
A,j

r
A,k

i � hr
A,j

ihr
A,k

i, we
then get a state with Gaussian Wigner function

W̄f(RA

) =
1

2⇡
p

det V̄
A

e�(RA�d̄A)T V̄

�1
A (RA�d̄A)/2, (20)

where R
A

= col(X
A

, P
A

) are phase space variables as-
sociated to the quadrature operators (in the main Letter
we kept the names x

A

and p
A

for these c-numbers in Fig.
2 for simplicity), and

d̄
A

= 2col(Re{F̄}, Im{F̄}), (21a)

V̄
A

=
1

C̃ 0 + 1

✓
C̃ 0 + e2r 0

0 C̃ 0 + e�2r

◆
. (21b)
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In order to gain more insight, we are going to write
this Gaussian state in a di↵erent manner. Concretely, it
is well known that any single-mode Gaussian state can
always be written in the form [1]

⇢ = D
A

(↵)R
A

(')S
A

(r̃)⇢th,A(ñ)S
†
A

(r̃)R†
A

(')D†
A

(↵),
(22)

where we have defined the displacement D
A

(↵) =
exp(↵A† � ↵⇤A), phase-shift R

A

(') = exp(i'A†A), and
squeezing S

A

(r̃) = exp[r̃(A†2 � A2)/2] operators, as
well as the thermal state ⇢th,A(ñ), which is a Gaus-
sian state with zero mean vector and covariance matrix
Vth,A(ñ) = (2ñ+ 1)I2⇥2. The displacement parameter ↵
coincides with the mean of the state, what in our case
means ↵ = F̄ , while no phase-shift is needed (' = 0)
for a state with a diagonal covariance matrix as (21b).
On the other hand, since the entropy is invariant under
unitary transformations, and for a single-mode state it
depends solely on the determinant of the covariance ma-
trix [1], the thermal photon number parameter ñ is found
by matching the determinants of Vth,A(ñ) and V̄

A

, that
is, (2ñ + 1)2 = det V̄

A

. Finally, S
A

(r̃) squeezes (anti-
squeezes) the momentum (position) variance by a factor
e�2r̃ (e2r̃), and hence the squeezing parameter r̃ is found
from the asymmetry of the covariance matrix, that is,
exp(4r̃) = V̄

A,11/V̄A,22. Combining all these results, (22)
is turned into the Gaussian state

⇢Gf (F̄ , C̃ 0, r) = D
A

(F̄ )S
A

(r̃)⇢th,A(ñ)S
†
A

(r̃)D†
A

(F̄ ). (23)

Then, taking into account that the mean-field solution
(16) assumes spontaneous symmetry breaking, whereas
in reality the statistics over many realizations would show
a random phase ✓, the mean-field ansatz has to be taken
as the mixture

⇢̄f(|F̄ |, C̃ 0, r) =

Z 2⇡

0

d✓

2⇡
⇢Gf (F̄ , C̃ 0, r), (24)

precisely the state that we introduced in the Letter.
Note finally that, given the relation A = S†

a

(r)aS
a

(r),
the relation between the Fock basis of the squeezed and
original cavity modes is |ni

A

= S†
a

(r)|ni
a

, and hence the
Gaussian state (23) can be written as

⇢Gf = S†
a

(r)D
a

(↵)S
a

(r̃)⇢th,a(ñ)S
†
a

(r̃)D†
a

(↵)S
a

(r), (25)

in the basis of the original cavity mode.

WIGNER FUNCTIONS FROM THE DENSITY
MATRIX

All our numerics have been performed by using the
Fock states {|ni

A

}
n=0,1,...,NA of the squeezed mode A

as the basis of the field’s Hilbert space (truncated to
a large enough photon number N

A

), what gives us the
reduced state of the cavity mode represented as ⇢f =P

NA

mn=0 ⇢
A

mn

|mi
A

hn|. In this section we explain how to
find the Wigner functions in the phase space of both the
squeezed mode A and the original cavity mode a, starting
from this representation of the state.

Let us write the polar form of the coordinate vector in
the phase space of mode A as R

A

= R
A

(cos�
A

, sin�
A

).
Hence, based on the following result [2–4] for the Wigner
function of the operator |mi

A

hn|:

W
mn

(R
A

,�
A

) =
(�1)n

⇡

r
n!

m!
ei�A(m�n)Rm�n

A

(26)

⇥Lm�n

n

(R2
A

)e�R

2
A/2,

where Lp

n

(x) are the modified Laguerre polynomials and
we have assumed m � n (note that W

nm

= W ⇤
mn

), we
get

W
A

(R
A

,�
A

) =
NAX

mn=0

⇢A
mn

W
mn

(R
A

,�
A

), (27)

which gives us the desired relation between the density
matrix ⇢A and the Wigner functionW

A

(R
A

) in the phase
space of the squeezed mode A.

On the other hand, in order to find the Wigner function
in the phase space of the original cavity mode a, we just
use the fact that A = S†

a

(r)aS
a

(r) is equivalent to the
symplectic transformation [1] R

A

= S(r)R
a

between the
corresponding phase spaces, with S(r) = diag(er, e�r).
Hence, given the Wigner function evaluated with (27)
in the phase space of mode A, the Wigner function
in the phase space of mode a is found as W

a

(R
a

) =
W

A

[S(r)R
a

].
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