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Squeezing Via Spontaneous Rotational Symmetry
Breaking in a Four-Wave Mixing Cavity

Ferran V. Garcia-Ferrer, Carlos Navarrete-Benlloch, Germán J. de Valcárcel, and Eugenio Roldán

Abstract—We predict the generation of noncritically squeezed
light through the spontaneous rotational symmetry breaking oc-
curring in a Kerr cavity. The model considers a ��� cavity that is
pumped by two Gaussian beams of frequencies � and �. The
cavity configuration is such that two signal modes of equal fre-
quency � � �� �� � are generated, these signal fields being
first-order Laguerre–Gauss modes. In this system, a spontaneous
breaking of the rotational symmetry occurs as the signal field cor-
responds to a Hermite–Gauss TEM mode. This symmetry breaking
leads to the perfect and noncritical (i.e., nondependent on the pa-
rameter values) squeezing of the angular momentum of the output
TEM mode, which is another TEM mode spatially orthogonal to
that in which bright emission occurs.

Index Terms—Four-wave mixing (FWM), nonlinear optics,
quantum fluctuations, squeezed light.

I. INTRODUCTION

S QUEEZED light is a kind of radiation exhibiting reduced
fluctuations with respect to vacuum in some special

observable. This occurs at the obvious expense of an increase
in the fluctuations of its canonical pair, as followed by the
Heisenberg uncertainty relation satisfied by the couple. In a
single-mode field, these canonically related observables corre-
spond to orthogonal field quadratures, which are equivalent to
the position and momentum of a harmonic oscillator. Squeezing
is a macroscopic manifestation of quantum phenomena that
is attracting continuous attention since the late seventies of
the past century [1]–[3]. Nowadays, a renewed interest has
arisen because of the importance of squeezing in generating
continuous variable entanglement, which is a central issue for
continuous variable quantum information purposes [4].

Squeezed light is generated by means of nonlinear optical
processes, such as parametric down-conversion or four-wave
mixing. The squeezing level attainable in such nonlinear op-
tical processes depends on the interaction time that is limited
by the nonlinear medium length. Thus, in order to increase the
squeezing level, these processes are usually confined to occur
within an optical cavity. In this way, the squeezing level can
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reach the largest possible levels at the system bifurcation points
such as, e.g., the emission threshold. Squeezing levels as large
as 90% (10 dB reduction with respect to vacuum fluctuations)
have been recently reported [5], [6] under such conditions in de-
generate optical parametric oscillators (DOPOs). However, per-
fect squeezing (i.e., the complete suppression of quantum fluc-
tuations in a field observable) cannot be achieved under these
conditions because complete suppression of fluctuations in a
mode quadrature implies the existence of infinite fluctuations
in the other quadrature, what would require infinite energy in
the process.

Nevertheless, perfect squeezing could be actually produced
as some of us have recently proposed [7]. The idea can be
put in short as follows. Consider a nonlinear optical process
in which two photons with equal frequency are generated
in Laguerre–Gauss modes with opposite orbital angular mo-
mentum (OAM) equal to 1. This is equivalent to generating
two photons in a Hermite–Gauss mode whose orien-
tation in the transverse x–y plane is determined by the relative
phase between the two Laguerre–Gauss photons, let us denote
it by . Now, assume that is not fixed as it occurs, e.g., in
a down-conversion process. This amounts to saying that the
orientation of the Hermite–Gauss mode is not fixed as is the
angle formed by the Hermite–Gauss mode with respect to the
x-axis. under these conditions, we can expect the occurrence
of unbounded fluctuations in the Hermite–Gauss mode orien-
tation, which suggests that the canonical pair of , namely the
angular momentum , can be perfectly fixed. But the
angular momentum of a mode forming an angle with
respect to the x axis is another mode forming an angle

with respect to the x-axis. Then, this mode could ex-
hibit perfect squeezing in one of its field quadratures. Note that
the concept of bifurcation is not involved in this discussion and
that the variable exhibiting unbounded fluctuations is an angle.
Then, a priori, perfect squeezing is possible in such a process
as “infinite” fluctuations are possible in the orientation .

Some of us in [7] and [8] have theoretically demonstrated
the earlier ideas in a DOPO tuned to the first transverse mode
family at the down-converted frequency. The requirement that
the angle can take any possible value (i.e., that the phase dif-
ference between the two Laguerre–Gauss modes be arbitrary)
is nothing but the requirement that the system be rotationally
invariant around the axis of the optical cavity. Hence, the re-
sulting squeezing can be understood as well as the result of
the spontaneous breaking of this rotational symmetry, as the
emitted Hermite–Gauss mode is obviously no more rotation-
ally invariant. We extended this study in [9] to DOPOs having
different transverse mode families resonating at the down-con-
verted frequency, arriving to the same conclusion: every time the

0018-9197/$26.00 © 2009 IEEE

Authorized licensed use limited to: Universidad de Valencia. Downloaded on November 19, 2009 at 04:31 from IEEE Xplore.  Restrictions apply. 



GARCIA-FERRER et al.: SQUEEZING VIA SPONTANEOUS ROTATIONAL SYMMETRY BREAKING IN A FOUR-WAVE MIXING CAVITY 1405

Fig. 1. Scheme of the system. A � medium is confined within an optical
cavity and pumped by two Gaussian beams of frequencies� and� . The cavity
tuning is such that two signal modes with frequency � � �� � � ��� are
generated. The two signal modes are degenerated in frequency but differ in the
spatial mode, one (the other) corresponding to a Laguerre–Gauss mode with�1
(�1) OAM.

nonlinear process generates light which breaks the rotational in-
variance of the system, the expected perfect squeezing is found.

In the present paper, we study a model for a -nonlinear
cavity in which squeezing appears as the result of the sponta-
neous rotational symmetry breaking. The interest of this new
proposal is twofold. On one hand, it allows us to demonstrate
that rotational symmetry breaking is a robust means for gener-
ating squeezing in the sense that is not limited to a -non-
linear cavity such as the DOPO. On the other hand, perfect
rotational invariance could be problematic to achieve in
systems because phase-matching requirements can imply the
tilting of the nonlinear crystal, thus compromising rotational in-
variance, a difficulty that disappears in a process because
phase-matching occurs easily in this case.

The type of -nonlinear cavity system, we are proposing
here is a novel one that has not been studied previously, as far as
we know. Hence, we derive the quantum model (see Section II)
as well as study its classical emission properties (see Section III)
before addressing its quantum properties (see Section IV). We
are able to demonstrate that the proposed device effectively ex-
hibits perfect squeezing originating in the rotational symmetry
breaking. In Section V, we summarize our main results.

II. MODEL

Consider an optical cavity with spherical mirrors containing
an isotropic medium. The cavity is pumped from the
outside with two coherent fields of frequencies and ,
these pumping beams having a Gaussian transverse profile.
Suppose, for simplicity, that these pumping beams have the
frequencies and shapes corresponding to two consecutive
longitudinal modes of the optical cavity. Then, within the
cavity the nonlinear interaction generates, through an FWM
process, two other fields having the same frequency such
that . Assume now that the cavity geometry
and tuning is such that these two signal fields have the shape of
first-order Laguerre–Gauss modes. These modes carry OAM
and its conservation imposes that one of the signal fields carries
+1 OAM, while the other carries 1 OAM as the pumping
fields have zero OAM (see Fig. 1).

As stated, the just described FWM process requires that
the optical cavity modes, as well as the fields’ frequencies, be

properly chosen. An immediate choice that verifies the pre-
vious requirements is a symmetric confocal resonator, where
the even and odd OAM modes are well separated in frequency
(see Appendix A for a short review of the modal structure of
a general resonator). This is thus the cavity that we discuss
here for simplicity, although we show in Appendix A that
nearly symmetric, nearly confocal resonators can be used with
equivalent results.

In a confocal, the resonance frequency of longitudinal mode
corresponding to the transverse family ( is the

mode’s radial index, while is the absolute value of its OAM)
is given by [10]

(1)

where is the effective cavity length.
In the simplest scheme, the pumping beams of our model can

correspond to two consecutive longitudinal modes and
with . The signal modes would then correspond to the
cavity modes with indexes and , as they verify

. Certainly, in the confocal resonator there
are other modes with frequency having odd OAM (all the
modes belonging to odd families), but we can neglect them by
considering that these higher order Laguerre–Gauss modes have
smaller coupling with the pump modes (and higher diffraction
losses indeed) and would consequently not be amplified [9].

Once we have shown that the FWM process we propose
could be experimentally implemented, we pass to formulate the
mathematical model of our system.

A. Fields

We shall assume for simplicity that the medium is placed
at the cavity’s waist plane and that is thin enough as to perform
the uniform field approximation, hence neglecting any depen-
dence of the fields on the axial coordinate . Thus, we write the
total quantum field inside the cavity, at the beam waist, as

(2a)

(2b)

(2c)

where H.c. stands for Hermitian conjugate,
is the position vector in the transverse plane written in polar
coordinates, subindices and denote pump and signal modes,
respectively, , with 1, 2, s, and is
the refractive index (we neglect dispersion for simplicity). The
slowly varying envelopes are

(3a)

(3b)

with and the annihilation and creation operators for
mode , which verify . As
for the spatial dependence in (3), they are given by [10]

(4a)

(4b)
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for the Gaussian and first-order Laguerre–Gauss modes, respec-
tively. In all cases, , , 2, s. Note, however,
that in the optical domain, in which 10 , one can
safely take as far as is not very small, which
implies that the waist is very nearly the same for all of the in-
volved modes. We make this approximation that, although not
essential, simplifies some expressions shortly.

For later use, we need the relation between the Laguerre–
Gauss modes and the Hermite–Gauss modes

(5a)

(5b)

with and being the Hermite–Gauss modes with an ori-
entation and with respect to the x-axis, respectively.
Thus, the slowly varying amplitudes at frequency can also
be written as

(6)

with
(7a)

(7b)

the annihilation operators for the Hermite–Gauss modes.
Finally, we introduce the field quadratures of these Her-
mite–Gauss modes

(8)

with and given by (7).

B. Hamiltonian

In the interaction picture, the system’s Hamiltonian can be
written as

(9)

where and correspond to the modes’ energies and ex-
ternal injection, respectively, and are given by

(10a)

(10b)

with the cavity detuning for the mode with
frequency , being the cavity resonance closest to that
mode. In a confocal resonator, this detuning is the same for all
the modes if the relative frequency of the pump modes is locked
to the free spectral range of the cavity, i.e., .
Hence, in the following we take . are the pumping
parameters, which are related to the experimental parameters by

(11)

being the cavity decay rate at the considered fre-
quency ( is the corresponding transmission factor through the
input mirror) and the power of the pump laser. In the fol-
lowing, we will assume for simplicity. de-
scribes the nonlinear interaction and can be written as the sum
of three contributions

(12)

with

(13)

(14)

(15)

describing self-phase modulation, cross-phase modulation, and
four-wave mixing, respectively. Note that this Hamiltonian con-
tains all the possible combinations of four operators conserving
both energy and OAM. The factors multiplying the different
terms are intuitive once one takes into account the two following
features: 1) there is a global factor 4 in and with re-
spect to coming from all possible permutations of the dif-
ferent operators and 2) if any of the four modes is a signal mode,
a factor 1/2 appears that comes from the transverse modes’ over-
lapping integral. Finally, it can be shown that the coupling con-
stant is given by

(16)

with the beam waist, the nonlinear medium length, and
the relevant third-order nonlinear susceptibility.

C. Quantum Evolution Equations

In this section, we apply the standard procedure to develop
the quantum theory of a nonlinear resonator within the general-
ized representation to our Kerr cavity model [11]–[13]. The
starting point is the system’s master equation for the density op-
erator , which reads

(17)

where is the Liouvillian superoperator describing field losses
through the output mirror, which applied to the density operator
reads

(18)

As we are assuming that the system has perfect rotational sym-
metry around the cavity axis it follows that .

As usual, we use now the generalized representation in
order to transform the operator master equation into a partial
differential equation for the quasi-probability distribution . In
this representation, to every pair of boson operators
it corresponds a pair of independent stochastic amplitudes
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verifying . By using standard tech-
niques, one finds that the Fokker–Planck equation governing
the evolution of reads

(19)

where we write vector as

(20)

and give the explicit expression of the components of both the
drift vector and the diffusion matrix in Appendix B.

Once the Fokker–Planck equation is known, it can be con-
verted, by applying Ito rules, into an equivalent set of stochastic
first-order differential equations: the quantum Langevin equa-
tions. They read

(21)

where the components of are real Gaussian noises verifying

(22a)

(22b)

and the noise matrix can be obtained from

(23)

The equivalency between the master equation and Langevin
equations must be understood as follows:

(24)

i.e., quantum expected values of normally ordered functions
are equal to the stochastic averages of the same functions after
changing boson operators by independent complex
stochastic variables .

With this procedure, we have obtained a set of stochastic dif-
ferential equations, (21) together with (74) and (76), ruling the
evolution of the fields inside the cavity. However, the analysis
of this model turns out to be quite involved.

A simpler model retaining the essential ingredients consists
in neglecting the temporal evolution of the pumping fields, or
further, considering the undepletion limit for the pump. As fol-
lows from (74a) and (74b) applied to (21), this will be a reason-
able approximation whenever the gain , (16), is small enough
as for . In such a case, one can safely neglect
the amplitude variation of the pump modes. Of course, in doing
that some of the dynamical richness of the system is lost, but
the approximation simplifies very much the analysis of the rota-
tional symmetry breaking that is fully retained by the simplified
model.

Hence, in the following, we will study a reduced model in
which the pump fields are taken to be equal (and real without
loss of generalization), i.e., we take

(25)

D. Reduced Model

Under the assumption that the pump fields remain constant,
thus satisfying (25), the Fokker–Planck equation of the system
looks like (19), but with simpler diffusion matrix and drift
vector.

From the general expressions given in Appendix B, it is easy
to obtain that the diffusion matrix reads now

(26a)

(26b)

( is like but swapping and , and changing by
), and that the components of the drift vector are

(27)

being like after swapping and , and changing
by .
Like before, from this Fokker–Planck equation, a set of

Langevin equations can be obtained. Nevertheless, it will be
useful to introduce the following change of variables and
parameters (we note that the phase factor appearing in the
rescaled fields is introduced to make the stationary solutions
of the classical equations satisfy , see (35), which
simplifies the quantum analysis)

(28)

with

(29)

in terms of which the Langevin equations for the reduced model
read

(30)

plus the corresponding equations for , which are like those
for as described earlier after swapping and , and
changing by . The overdot indicates derivative with respect
to the adimensional time , and the four components of the
noise vector satisfy properties (22) now for the adimensional
time . As for the noise matrix , it can be obtained from

as usual, but now using the diffusion matrix after
introducing the changes (28), which reads as (26a) but with

(31)
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and with like but swapping and , and changing
by . In any case, there is no need to evaluate at this

moment.
Equation (30) constitutes the model that we analyze in detail

shortly.

III. CLASSICAL LIMIT

Before addressing the analysis of quantum fluctuations, we
need to know the classical steady states of the system as well
as their stability properties, and for doing that we must first
write down the classical limit of (30). This is easily done by ne-
glecting the noise terms and by making in the quantum
Langevin equation (30). We obtain the following set of two com-
plex ordinary differential equations for the signal classical fields
amplitudes :

(32)

Due to rescaling (28), we can appreciate that the classical
dynamics of the system is governed by just two parameters,
namely the normalized detuning and pump strength . We
pass now to study the stationary solutions of (32) as well as
their stability properties.

Equation (32) has two steady states. First, there is the trivial
steady state . It is easy to show that its stability is gov-
erned by the eigenvalues

(33)

what implies that the trivial solution is stable except when the
pump amplitude verifies with

(34)

in which case the trivial solution becomes linearly unstable be-
cause . Note that a prerequisite for the destabiliza-
tion of the trivial solution is that ( is positive).

At the instability points the system passes from
the trivial state to the nontrivial one, which reads

(35)

with

(36)

and where is half the phase difference between the two
Laguerre–Gauss modes amplitudes, and is not fixed by (32),
hence being arbitrary. In Fig. 2(a), this solution is shown as a
function of for three values of .

Note first that there are two possible values for . It is easy to
demonstrate that the solution with the minus sign in front of the
square root [dashed lines in Fig. 2(a)] is always unstable, while
the solution with the plus sign [continuous lines in Fig. 2(a)] is
stable within all its domain of existence. Note also that while the
sum of the phases of the two Laguerre–Gauss modes amplitudes

Fig. 2. (a) Intensity of the emitted classical signal beam as a function of the
pump strength � for the indicated values of the detuning�. Continuous (dashed
lines) lines indicate linearly stable (unstable) solutions. (b) Domain of existence
and stability of the solutions. The nontrivial solution exists in the domain limited
by the two continuous lines. The trivial solution is stable to the left of the dashed
line and to the right of the right continuous line. Hence, the system is bistable in
the region between the dashed line and the left continuous line, marked in the
figure.

is fixed to zero [this is due to the change of variables (28)],
their phase difference is an arbitrary quantity, which reflects
the rotational invariance of the system as this phase difference
determines the orientation in the transverse plane of the emitted
Hermite–Gauss mode, see (38) later.

From (36), it follows that the necessary condition for the ex-
istence of the nontrivial solution is , and its domain of
existence is determined by the condition

(37)

Note that this inequality can be satisfied only if , in
agreement with our analysis of the trivial solution. In Fig. 2(b),
we represent this domain of existence as well as the domain of
stability of the trivial solution (see Fig. 2(b) caption).

From all the aforementioned equations, we see that the clas-
sical nontrivial state’s slowly varying amplitude can be written
as

(38)

This solution corresponds to a Hermite–Gauss mode rotated an
angle with respect to the x-axis, being the value of this angle
arbitrary. As already noted, the arbitrariness of is the conse-
quence of the rotational symmetry of the system: as the pumping
modes are rotationally symmetric, as the cavity is, the signal
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Hermite–Gauss mode cannot have any preferred orien-
tation, and thus, all orientations are equally likely. This prop-
erty is essential for the results we present shortly for quantum
fluctuations.

Finally, note that the fact that the emission takes place in a
mode, allows us to distinguish between two different

modes: the mode, which is the classically generated one,
and its orthogonal mode , which is empty of photons at
the classical level. In the following, we shall refer to these modes
as the bright and dark modes, and will define collective indexes

and .

IV. QUANTUM ANALYSIS

We return to the quantum description of the system. In the
following sections, we first derive the linearized Langevin equa-
tions and then solve them with the method introduced in [14]
and [15] and further used in [7]–[9]. Next, we show the most
outstanding quantum properties of the system: after proving that
the bright mode is rotating randomly in the transverse plane, we
show that the dark mode has perfect noise reduction in one of
its quadratures.

A. Linearization of the Langevin Equations

We linearize (30), a valid approximation in the large photon
number limit, and thus, appropriate for our purposes as we
are going to analyze quantum fluctuations around the above
threshold solution (35). Consequently, we write

(39a)

(39b)

where the phase difference appears explicitly in order to keep
the ’s small. Then, by assuming that , , and are small
quantities, we easily arrive to the following linearized Langevin
equations:

(40)

where

(41a)

(41b)

where is a normalization factor (see (51) shortly) and is a
matrix with elements

(42)

and is the diagonal matrix

(43)

Finally, refers to matrix evaluated at the stationary state
(35). Its expression can be derived from with

(44a)

(44b)

After some algebra, it is easy to show that can be written as

(45a)

(45b)

where elements are independent of , and satisfy the
following relations:

(46a)

(46b)

B. Solving the Linearized Langevin Equations

In order to solve the linearized Langevin equation (40), we
follow a procedure analogous to that in [7]–[9], [14] and [15].
The method consists in projecting (40) into the eigensystem of
the linear operator . This provides a direct way for the evalu-
ation of the quantum fluctuations of the relevant physical quan-
tities, as we show shortly.

Operator has not an orthonormal but a biorthonormal
eigensystem, i.e., there is an eigensystem of operators and

verifying

(47a)

such that
(48)

The quantitative result of the analysis of and is that their
four eigenvalues read

(49a)

(49b)

We see that eigenvalue is always null. This means that its cor-
responding eigenvector, which is said to be a Goldstone mode
(its expression is given shortly), is neutrally stable, i.e., its as-
sociated variable can take any possible value. Of course this re-
flects the indeterminacy of the phase difference between the two
Laguerre–Gauss modes, , or what is the same, the indetermi-
nacy of the orientation of the Hermite–Gauss output mode in
the transverse plane. Hence, the null eigenvalue implies that the
fluctuations introduced by quantum noise in this orientation are
not damped and, hence, that quantum noise will induce arbi-
trary rotations of the Hermite–Gauss output mode in the trans-
verse plane. Thus, the breaking of the rotational symmetry of
the system introduced by the appearance of the Hermite–Gauss
mode is, in a sense, counteracted by quantum noise by making
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possible any possible orientation. Together with , there
is the companion eigenvalue . Its corresponding eigen-
vector (see shortly) is consequently maximally damped irre-
spective of the system’s parameter values. As we show shortly,
it is the observable associated to the eigenvector corresponding
to the one that is perfectly squeezed.

On the other hand, the two other eigenvalues, and , are
complex in general; nevertheless, they reach the values 0 and

2 at the bifurcation points (i.e., at the points in the param-
eter space separating the regions where the steady state solu-
tion (35) exist or not). Consequently, their associated eigenvec-
tors are those exhibiting the usual squeezing occurring only at
the bifurcations. This squeezing is not perfect (it seems perfect
only owed to the linearized treatment) and degrades quickly as
the system parameters are brought apart from the bifurcation
points. We shall not analyze this squeezing here because there
is not any relevant new feature in it with respect to what has
been described many times in other nonlinear optical cavities.
Hence, in the following, we concentrate on the analysis of the
modes associated to the first two eigenvalues that are the ones
connected with the rotational symmetry breaking.

It is not difficult to show that the eigenvectors of associated
to and are

(50a)

(50b)

with

(51)

a normalization factor and a real quantity given by

(52)

As for the eigenvectors of , they read

(53a)

(53b)

Once these eigenvectors of the linear operator are known, we
proceed to project quantum fluctuations onto them. We define
projections

(54)

Note that these projections can be easily related with the fluctua-
tions of the quadratures associated to the bright and dark modes

and , see (8). In particular, by using (8) and (39), it is
easy to arrive at

(55)

Next, we project the linearized Langevin equation (40). By
multiplying them by on the left, we get

(56a)

(56b)

where we have taken (this can be done because the ar-
bitrary phase can be conveniently redefined in order to collect
the information on this mode). We note that although and

depend on phase , does not, as can be checked from
(43) and (45). Hence, these equations are truly decoupled for
and .

In the stationary limit, i.e., for large , the solution of the
earlier equations reads

(57a)

(57b)

Finally, we evaluate, for later purposes, the correlation spec-
trum of . From the formal solution (57b), it is straightforward
to prove that the correlation function of this projection reads

(58)

It is not difficult to obtain that , and then
the spectrum of correlation turns out to be

(59)

C. Dynamics of the Bright Mode’s Orientation

We first analyze the dynamics of the output pattern orienta-
tion, governed by . Equation (57a) shows that the phase dif-
fuses with time what means that the orientation of the classical
mode in which emission occurs, (38), exhibits a random walk.
Then, although the mode orientation is well defined at every in-
stant, it can be understood that the pattern orientation is unde-
fined as after some time any value between 0 and could be
found. This is what we understand when we say that the orien-
tation of the output pattern is undetermined.

It is important to see how much does diffuse. From (57a),
it is straightforward to show that the variance of is given by

(60a)

where we have used the notation , and

(61)

with , , and being given by (29), (36), and (52).
In Fig. 3, we represent as a function of the pump

strength for several values of . Note that for (i.e., at
the supercritical bifurcation that occurs in the upper branch of
the domain of existence of (35), see Fig. 2), . This is
an intuitive result because when the output mode mean photon
number is close to zero, the pattern orientation can be abruptly
changed with the addition of a single couple of photons. As the
system is brought apart from this bifurcation, the mean number
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Fig. 3. Dependence of the normalized diffusion constant� � � �� as a func-
tion of the pump strength � for the values of the detuning indicated in the figure.
The vertical dashed lines indicate the values of � where the nontrivial solution
ceases to exist.

of photons rapidly increases and, consequently, it is more diffi-
cult for the fluctuation to change the orientation of the pattern,
what is obviously consistent with the rapid decrease of . As
for the quantitative value note that, except very close to the su-
percritical bifurcations, is a quantity of order one what means
that the diffusion constant is basically of the same order of
magnitude as , which we have assumed to be a very
small number. Consequently, although the TEM output mode is
randomly rotating in the transverse plane, the rotation is very
slow except very close to the supercritical bifurcation points.

D. Noncritical Squeezing Properties of the Dark Mode

Now we focus on the main result of the present paper. We
show shortly that the dark mode has complete noise reduction
on its phase quadrature irrespective of the system parameters.
To this aim we evaluate its quadrature fluctuations as measured
in an homodyne detection experiment. As it is well known (see,
e.g., [16]), quadrature fluctuations outside the cavity are given
by the noise spectrum, which for a general problem quadrature

( refers to any of the transverse modes of our system) is
given by

(62)

with the squeezing spectrum that, after taking into ac-
count our rescaling (28), can be written as

(63)

Defined in this way, means complete absence of
fluctuations at , while means that fluctua-
tions at are those corresponding to the vacuum state.

In the homodyning, the spatial profile of the local oscillator
field (LOF) selects the transverse mode to be measured, while
its phase selects a particular mode’s quadrature. In what follows
we suppose that the LOF is perfectly matched to the dark mode’s
profile . As we saw in (55), the independent quadratures

of this mode are and , from which we can build a
general quadrature as

(64)

This expression is readily obtained from the more common
expressions and

.
Hence, by using the relation between the independent quadra-

tures and the projections (55), and remembering (59) and that
, it is trivial to find the noise spectrum of this general

quadrature, which reads

(65)

This expression shows that the quantum properties of the dark
mode of the current system are exactly the same as that found in
[7] and [8] for the case of a DOPO cavity: at ,

, and thus, it has complete absence of
fluctuations on its phase quadrature , while another
of its quadratures ( in our case) carries only with vacuum
fluctuations. Any other quadrature having between and

is squeezed below the vacuum level, though the squeezing
level is smaller as approaches to . These results are inde-
pendent of the system parameters, what we expected as the noise
reduction relies on the rotational symmetry breaking only.

It could seem that this result violates the uncertainty prin-
ciple, as the product of the noise spectra corresponding to two
orthogonal quadratures is below unity. However, in [8], we have
proven that this is actually not the case, as the canonical pair of
the squeezed quadratures is not another quadrature, but the ori-
entation of the dark mode , which is indeed undetermined in
the long time term.

V. CONCLUSION

We have proposed a model for a Kerr cavity in which a spon-
taneous rotational symmetry breaking occurs when the system is
beyond the emission threshold: the nonlinear cavity has a perfect
rotational symmetry and is pumped by Gaussian beams, but the
emitted signal field has the shape of a mode that breaks
the rotational symmetry. We have demonstrated in a special
simple limit (in which the pumping fields are taken as constants)
that the rotational symmetry breaking implies: 1) the diffusion
of the output mode orientation and 2) the perfect squeezing of
the phase quadrature of the mode that is rotated
with respect to the signal mode. These results are in
perfect agreement with our previous proposal of the symmetry
breaking mediated squeezing in a DOPO model [7], [8]. The in-
terest of the results here presented are twofold. On one hand,
we are proposing a system different to that of [7]and [8] for
the possible observation of the phenomenon, thus showing that
the results in [7] and [8] are quite general. On the other hand,
rotational symmetry could be broken in a DOPO cavity if an-
gular phase matching is necessary, as in this case, the nonlinear
crystal axis is rotated a certain angle with respect to the cavity
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axis, a problem that does not exist in the case of a nonlinear
medium as phase matching is easier to obtain.

As for the particular model we have proposed, in its formu-
lation we have assumed a confocal cavity, as in this cavity type
the required resonances are verified. Note, however, that the in-
gredients that are essential for the phenomenon of rotational
symmetry breaking mediated squeezing generation are: 1) rota-
tional invariance and 2) that the signal field photons have non-
null OAM. Then, the dynamics of the pumping modes is irrel-
evant except for the quantitative details. In this sense, the use
of a confocal cavity is not essential and any other cavity in
which the signal modes are the right ones could exhibit the de-
scribed phenomenon. Then, this phenomenon could possibly be
observed in other cavities such as, e.g., fiber resonators. We
wish to note that related optical fiber (or other Kerr media) de-
vices leading to optical parametric oscillation have been demon-
strated and very likely present interesting quantum properties
[17]–[19].

Another comment we would like to add concerns the unde-
pleted pump approximation. How would the dynamics of the
pumping modes affect the results we have derived? The inclu-
sion of the pumping fields equations in the study would obvi-
ously introduce more eigenvalues (the ones corresponding to the
stability of these modes) and would modify some of the eigen-
values governing the dynamics of the signal modes, but would
not modify the existence of a Goldstone mode once the signal
field is switched on (as it appears due to the symmetry breaking).
Hence, as far as the dynamics of the pumping modes does not
destroy completely the stability of the continuous wave (CW)
signal field emission, wherever the signal modes are stable the
phenomenon will be present. It could well happen that the gen-
eral model exhibits Hopf bifurcations that would reduce the do-
main of stable existence of the CW signal modes, but there will
be a finite domain of stability for these modes and within it there
will be the perfect squeezing properties we have described in our
work.

We would finally stress two important features. In [7], we
demonstrated for a DOPO model that small imperfections in the
rotational symmetry do not lead but to a small degradation of the
squeezing level (e.g., a ratio 2:1 between the cavity losses af-
fecting two orthogonal directions in the transverse plane still al-
lows for 10 dB of noise reduction). On the other hand, in [8], we
have numerically demonstrated for the same DOPO model that
the rotational symmetry breaking mediated squeezing is perfect
beyond the linear approximation. These conclusions should also
hold for the system presented here.

APPENDIX A

For the sake of clarity, we find it convenient to review
the main properties of the cavity modes in a Fabry–Perot
resonator with spherical mirrors (see, e.g., [10] for more de-
tails). Within the paraxial approximation, it is well known
that the Laguerre–Gauss modes form a complete set of spatial
modes describing the light inside the resonator. Let and

denote the curvature radius of the cavity mirrors, and
the effective cavity length, being

the geometrical length of the resonator, and and the

length and refractive index, respectively, of the medium.
Then, the Laguerre–Gauss modes at the resonator waist plane
can be written as

(66)

with the transverse coordinates being
its polar decomposition, a normaliza-

tion factor and

(67)

being the modified Laguerre polynomial with radial and
polar indexes , which are given by Rodrigues formula

(68)

By choosing the normalization factor as

(69)

the following orthogonality relation holds:

(70)

The beam spot size at the cavity waist is given by

(71)

with and the beam frequency.
The Laguerre–Gauss basis is recommended in order to visu-

alize the OAM of the field, as these modes are eigenstates of the
OAM operator with eigenvalues . Concerning the res-
onance frequency of the different modes, they are different
in general for each mode. Concretely

(72)

with an integer (different correspond to different longitu-
dinal cavity modes), and the plus sign must be used for
(and hence if the resonator must be stable), while the
minus sign appears in the opposite case ( and ).

Hence, cavity modes having the same family order
have the same frequency and are said to be members of the

same family (in the following we will denote this frequency
by ). It is clear that family consists of the set of
Laguerre–Gauss modes with ,
having OAM , , . The lower OAM modes
have 0 or 1 for even or odd , respectively.

As we stated in the model section, we need the resonator
tuned in such a way that the resonance frequency of a
family lies in the middle between that two fundamental
modes. To this aim, resonators satisfying are the
perfect ones, as they satisfy this condition and in addition give
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Fig. 4. Modal spectrum of a nearly symmetric, nearly confocal cavity. In the
figure, the values � � � � ���� have been chosen. Pump frequencies are
denoted by � and � , while the generated signal frequency is � , having de-
tuning � with respect to the � � � family resonance frequency.

the largest splitting between the and modes (half
the free spectral range, i.e., ). However, the situation is
not ideal, as these resonators also satisfy

(73)

and hence modes laying in higher odd families have the same
resonance frequency as that of the one. Nevertheless,
for the reasons we gave in the beginning of the model section,
the existence of these mode should not disguise in any way the
phenomenon we study in this work.

On the other hand, in the classical analysis section, we show
that in order to generate the desired mode, it is needed
some detuning of the pump field’s frequencies with respect to
the cavity resonances (a positive detuning indeed, i.e., the cavity
resonance must be larger than the pump frequencies). This fea-
ture allows us to relax the restrictions onto the cavities that are
useful for our purposes. To see how this is the case, we show
in Fig. 4 the resonance structure of a cavity with .
The modes laying in families of the same parity have no longer
the same resonance frequency, and they get split. To prevent any

family taking part in the nonlinear competition, we must
require in addition and to be negative, as in this case the

family has the lowest detuning ( in Fig. 4) with respect
to the signal frequency ( in Fig. 4).

Hence, we see that although our model has been considered
with a confocal cavity having , the whole family of
nearly symmetric, nearly confocal cavities could be also used.

APPENDIX B

The components of the drift vector in (19) read

(74a)

(74b)

(74c)

(74d)

and the rest of components are as after complex-con-

jugating and swapping and . As for the diffusion matrix
in (19), it reads

(75)

being a 4 4 matrix with elements

(76a)

(76b)

(76c)

(76d)

(76e)

and as after swapping and .
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