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We introduce quantum walks with a time-dependent coin, and show how they include, as a particular case,
the generalized quantum walk recently studied by Wojcik er al. [Phys. Rev. Lett. 93, 180601 (2004)] which
exhibits interesting dynamical localization and quasiperiodic dynamics. Our proposal allows for a much easier
implementation of this particularly rich dynamics than the original one. Moreover, it allows for an additional
control on the walk, which can be used to compensate for phases appearing due to external interactions. To
illustrate its feasibility, we discuss an example using an optical cavity. We also derive an approximated solution
in the continuous limit (long-wavelength approximation) which provides physical insight about the process.
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I. INTRODUCTION

Quantum walks (QWs) [1,2] constitute a promising ingre-
dient in the research of quantum algorithms [3] but also have
an intrinsic interest, reinforced through their connection with
quantum cellular automata [2] and with phenomena such as
Anderson localization or quantum chaos [4—6].

Both in the discrete or the continuous version, QWs pro-
vide a mean to explore all possible paths on a lattice in a
parallel way, which is natural for quantum evolution, to-
gether with constructive quantum interference along the
paths. Thus they can allow the development of probabilistic
algorithms in a more efficient way than their classical coun-
terparts [7]. It is therefore crucial to fully explore the possi-
bilities offered by QWs, especially in connection with their
physical implementation.

Modified QWs can give rise to new physical phenomena,
along with more efficient algorithmic applications. Different
variations of the standard discrete time QW have been pro-
posed, including QWs with two entangled particles [8] or
entangled coins [9], multistates QWs [10,11], as well as
QWs with alternation of different quantum coins in a certain
sequence [12]. More interesting to us are the generalized
QWs that modify the time evolution by the acquisition of
position-dependent phases by the walker at every step [4-6].
Those generalizations show phenomena that differ from the
typical linear spreading of the wave function in the standard
QW, such as quantum resonances and dynamic localization.

Within this spirit, we explore a modification on the stan-
dard coined QW, which consists of the introduction of a
time-dependent coin. As we discuss, this modification intro-
duces new possibilities on the walk which are worth inves-
tigating. Here we concentrate on a particular time-dependent
coin that leads to QW equations nearly identical to those
corresponding to the generalized QW introduced by Wojcik
et al. [5] (see also Refs. [4,6]). Our approach presents the
advantage that the corresponding modifications are made on
the coin alone, which is a simple one-qubit system, in con-
trast to the original proposal, which requires operations to be
performed on a large system (the Hilbert space of the walk-
ing particle). Moreover, a time-dependent coin can be used
as a control mechanism to compensate for phases arising
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from some external influence. We illustrate this idea with an
example.

This paper is organized as follows. In Sec. II we introduce
the basic idea of a time-dependent coined QW and relate it to
previous works. In Sec. III, we review the main aspects of
the generalized QW introduced by Wojcik ef al. [5], show
how an extra transformation (with respect to the standard
coined QW) on the walking particle, can be encoded into a
time-dependent coin, and then show the equivalence between
the obtained generalized QW and that of Ref. [5]. We also
discuss the utility of a time-dependent coin as a control
mechanism. In Sec. IV we show how this generalized QW
could be implemented in an optical cavity. Then, in Sec. V,
we derive an approximated continuous limit, a long-
wavelength approximation to this time-dependent QW,
which is appropriate for describing dynamic localization. Fi-
nally, in Sec. VI we summarize our main results.

II. TIME-DEPENDENT COINED WALKS

The standard QW corresponds to the evolution on a one-
dimensional lattice of a quantum system (the walker)
coupled to a bidimensional system (the coin), under repeated
application of a pair of discrete operators. Let Hp be the
Hilbert space of the walker, with {|n), n € 7} a basis of Hp;
and let H, be the Hilbert space of the coin, with basis
{lu),|d)}. The state of the total system belongs to the space
H=H® Hp and, at a given time, can be expressed as

9(0)) = X [u, (1) n,d)]. (1)

n,u) + d,(t)

The evolution of the system is governed by two operators: (i)

an arbitrary unitary transformation c acting on H., which
can be any unitary 2 X2 matrix and is usually chosen as

o Vi-p
T
Vi-p —vp

(with p=1/2 the balanced Hadamard coin H=(o+0)/ V2 is

recovered); and (ii) the conditional displacement operator S
acting on Hp,
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S

nu)=|n+1,u), (3)

S

n,dy=|n-1,d). (4)

Altogether, they produce the evolution from instant -1 to ¢
given by

|A0)) = SClyde ~ 1)) 5)
In this paper, we introduce the idea of a modified QW,

where the coin changes during the evolution, i.e., é‘(t). In
this case, the evolution from instant -1 to ¢ is defined by

|91)) = SC()| g1 = 1)). (6)

A particular case of this would be the proposal in Ref.
[12], in which two fixed standard coins were alternated in a
given sequence, leading to a sub-ballistic wave function
spreading for some particular choices of the coin series. In
order to be more specific, we study the effect of a time-
dependent coin of the special form

é([) ~ \“";g_iq)(t) V1 - pe—iq)(r) (7)
a Nap= pei<1>(t) _ \; i)

Notice that Eq. (7) can be obtained as the sequence of two
operations, i.e.,

C(r) = Cyn)C, (®)
with
A e 0
CO(t) = ( 0 e,-q)(,) ) P (9)

and C given by Eq. (2).

Again, ®(¢) is quite a general function. In this paper we
shall restrict ourselves to a particular case that, as com-
mented above, leads to a generalized QW which is nearly
identical to that analyzed in Ref. [5]. Other possibilities will
be considered in a future work.

III. USING TIME-DEPENDENT COINS TO IMPLEMENT
DYNAMIC LOCALIZATION AND QUASIPERIODIC
DYNAMICS

Recently, Wojcik et al. [5] (see also Refs. [4,6]) showed
that a generalization of the QW (GQW in the following) in
which a position-dependent phase ®(n) o n is acquired by the
walker with each evolution step, produces quasiperiodic dy-
namics and localization effects. There is a physical reason
for introducing ®(n): the walker is a physical system that
evolves in time, and this evolution can introduce such
phases, via e.g., external interactions.

Here we show that such generalization can in fact be re-
cast as a QW with a time-dependent coin. We concentrate
here on the GQW of Ref. [5], which is equivalent to that of
Ref. [4], but our approach can easily be shown to also cover
the proposal of Romanelli et al. [6]. In fact, the only differ-
ence in the dynamical equations, with respect to Refs. [4,5],
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is that the position dependent phase in Ref. [6] goes like
®(n) <n?.

A. GQW

Let us briefly present the GQW introduced in Ref. [5]. We
first define the discrete position operator 7 such that

iln) = n|n), (10)
and, related to this one, the phase operator
Ey= ', (11)

where ¢, is a constant. Following Ref. [5], the evolution of
the system is governed by

[41))y = SCE |yt = 1). (12)
The state of the system at a given time can be expressed as

(1)) = 2 [it, (1)) + (1)

n,d)], (13)

from which it is easy to obtain

it,(1) = e[\ pit,_, (1= 1) + 1 = pd,_ (1= 1)], (14)

d,(1) = VN1 = i, (1 = 1) = pd, (1= 1)]. (15)

From the solution of these equations one can evaluate the
probability of finding the walker at the lattice point n at
iteration ¢ by using

P,(1) = |, (1) + |d, ()] (16)

We now briefly summarize the main features of the solu-
tions of Egs. (14) and (15). Wojcik et al. [5] found that for
rational values of ¢,/2m dynamical localization, shown by a
“quasiperiodic” behavior of the standard deviation o of the
probability distribution, is observed during a transient re-
gime, but for long enough times a ballistic diffusion occurs.
For irrational values of ¢,/2, on the contrary, the diffusion
becomes suppressed, and the walk shows dynamic localiza-
tion around the starting point for arbitrarily long ¢. Let us
consider the case of a rational ¢y/27 in more detail.

First we notice that the probability distribution P,(¢) is
invariant under the change

Bo— do+ Tk with k e Z. (17)

Then, if we focus on rational values of ¢,/27, we can re-
strict the study to

|
and 0=2<Z, (18)
2

p
where g/p is an irreducible fraction. Moreover, the study can
be limited to even values of p, since given a case g/p with
odd p, there is a value (2¢g—p)/(2p) with an even denomi-
nator leading to the same probability distribution, as a con-
sequence of symmetry (17).

Keeping this in mind, a numerical analysis of Eqs. (14)
and (15) shows that, given an even p, the solution of the

¢0 = Zﬂz
p
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FIG. 1. This figure illustrates the localization features of the
GQW during the transient regime, by showing the probability that
the walker returns close to its initial position after m quasiperiods.
As can be readily observed, the number of these quasiperiods be-
fore the transient ends increases with p.

GQW shows a quasiperiod T=p during the above-mentioned
transient regime. The duration of this transient, i.e., the num-
ber of quasiperiods that it exhibits, turns out to be larger the
larger is p. In other words, the probability that the walker
returns to the initial position after one quasiperiod,
(Po(mT)=1) with m € N, increases with p, as we show in
Fig. 1. This figure clearly shows that the loss of localization
takes place more slowly for larger values of p.

Apart from this oscillation of quasiperiod p, the standard
deviation o of the probability distribution shows a faster sec-
ondary oscillation that depends on ¢. In fact, one finds ¢
secondary oscillations within each period of the main oscil-
lation. These secondary oscillations are more pronounced the
smaller is g and the larger is 7. This is clearly appreciated in
Fig. 2, where we show the evolution of o for T=p=110 and
four different values of g. Notice how the GQW returns
(only approximately; remind this is a transient behavior) to
the initial condition, o(t=0)=0, when t=mT, oscillating ¢
times between t=mT and r=(m+1)T.
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B. An alternative approach
Here we present our alternative approach. Let us define

A e
Cy= 0 o) (19)

It is straightforward to show that the following relationship
holds

gﬁ() = é()E()S, (20)

with § given by Egs. (3) and (4) and E, given by Eq. (11).

Repeated use of the above expression, together with the
evolution Eq. (12), leads to a modified form of the evolution
equation, which can be expressed as

(1)) = (Eo)'|40)), (1)

where |¢(t)) verifies
1)) = SC(0)| (1 - 1)), (22)
|[14(0)) = |14(0)), (23)

and C (#) is a time-dependent coin operator, defined as

/_ . I .
| he—idot 1 = pe~i%ot
R A Vpe V1 - pe
C(f)E(Co)tC=< T i i >, (24)
V1 = pei®t  —\pel%o

ie., (éo)t:é‘o(t), cf. Eq. (7), with ®(r)=yt. By this simple
procedure we have demonstrated that the generalization of
the QW introduced in Ref. [5] can be obtained by introduc-
ing a suitable time-dependent coin. Although the probability
amplitudes are not identical to those of the GQW due to the
phase factors appearing in Eq. (21), the probability distribu-

tions are the same obtained either with |(r)) or with |¢(1)),

and both descriptions are thus equivalent from this point of
view.

FIG. 2. Here we show how changing the
value of ¢ influences the behavior of the walker.

N1
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We have chosen symmetric initial conditions
u,(0)=68,,/v2 and d,(0)=i&,/V2, the Had-
amard coin (p=1/2), p=110, and four different
values of g. The standard deviation o(r) against
time has exactly g peaks within one quasiperiod.
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The equivalence nevertheless breaks down for the QW on
the circle, as the phase added in Ref. [5] depends on the
position, so that a difference may arise in the circle when
passing from position —L to position +L.

Now we write down explicitly the equations of evolution
for our alternative approach. By performing a decomposition
analogous to Eq. (13), the equations of evolution become

(1) = e[\ pu,_ (1= 1) +\1 = pd,_, (1= 1)], (25)

d(0) = "1 = puty (= 1) = Vpdy (1= 1)1, (26)
which are equivalent to Egs. (14) and (15), as Eq. (21) pro-

vides the connection between both descriptions, which reads

(1) = u, (D", d, (1) = d,(1)e"™ . (27)

We now transform the coupled equations (25) and (26)
into space-time recursive equations for u, and d,, where both
components are decoupled. We start from

[z + 1)) = SC(r + )| g1)), (28)

gz = 1)) = CT(1)ST|l0)), (29)

and making use of

Cr+1)=CC(), (30)
we obtain, after some algebra
C(I)|l/j(t+ 1)> - |',b(f— 1)> = \,’/; E E [an_l(t)e—if¢o
a=u,d n
- an+1(f)e”¢°]|n,a) (31)

or, equivalently,

(1 +1)e' % —u, (1= 1) = \f’;[”n—l(f)e_it(ﬁo = 1 (1)),
(32)

d,(t+ De 0 —d, (1= 1) = \p[d,_, (e "% = d,,, ()],
(33)

Finally, the probability of finding the walker at the lattice
point n at iteration ¢ is given by

Pot) = u, () + |d, ()] = Py(1) + Pry(0). (34)

Since |u,(t)| =|@,(z)| and |d,(1)|=|d,(7)|, there is no differ-
ence between the probability distribution for the QW on a
line calculated with Egs. (25) and (26) or with Egs. (14) and
(15), as already commented.

C. The time-dependent coin as a control mechanism

In this section we discuss how a time-dependent coin can
be used to gain control over a possible phase arising during
the walk, as a consequence of additional interactions [4]. We
illustrate this idea with an example which shows that, at least
in some cases, the position-depending phase acquired be-
tween two steps in the walk could be canceled by an appro-
priate action on the coin.

PHYSICAL REVIEW A 73, 062304 (2006)

Let us assume that the walker is subjected to the effect of
the GQW defined by Eq. (12). We have shown in the previ-
ous section that this kind of QW is equivalent (modulo a
final phase) to one with a time-dependent coin. Intuitively, if
one wants to compensate for the phases acquired during the

GQW, one should replace the coin operator C by a time-
dependent operator C () defined by C (n)= (é‘g)’é . In this way,
the evolution is governed by

|9(0)) = SC() Eg| it = 1)),

Using the properties given in Sec. III B, one obtains

|1)) = (0 (SC)'[9(0)). (35)
Showing that the combined action of the phase operator E
and the time-dependent coin defined above, is equivalent [up

to a phase given by the action of (E;)] to the standard quan-
tum walk introduced in Sec. II. In other words, Eq. (35) can
be written, when decomposed in the |n,u), |n,d) basis, as

a,(t) = eMPa’ (1)

where a=u,d. The coefficients a,(¢) then correspond to Eq.
(35), whereas a)(t) stand for the standard QW. In this way,
the complex dynamics arising from the GQW translates into
a trivial phase.

IV. IMPLEMENTING THE GENERALIZED QUANTUM
WALK

Along recent years there have been many proposals for
the experimental implementation of QWs. These cover both
systems whose dynamics can be described only within the
framework of quantum mechanics [13-19] as well as setups
whose description does not require quantum mechanics
[20-24]. In fact, the QW on the line was nearly implemented
in an optical cavity [25], as it was highlighted in Ref. [21]
and fully discussed in Ref. [22]. Although an experimental
realization of the QW using only classical means has been
communicated recently [26], it is a fact that there has been
little experimental research about this process.

Here we comment on how the GQW we are studying
could be implemented in an optical cavity. We follow our
approach to the GQW as it is more easily implementable
than the original proposal by Wojcik et al. [5]. This is due to
the fact that with our approach it is only needed to modify
the unitary transformation acting on the qubit, which is a
two-dimensional system, while the original proposal [5] im-
plies acting on all the points of the lattice.

In Refs. [21,22], it was shown that the QW on the line can
be implemented by the frequency of a quasimonochromatic
field, e.g., an optical pulse of appropriate duration, inside an
optical cavity. As stated, in this classical implementation the
role of the walker is played by the field frequency, and the
role of the coin can be played, e.g., by the field polarization.
The simplest scheme is that represented in Fig. 3 [21], with-
out EOMbis (see below for the role of this element): The
electro-optic modulator (EOM) implements the displacement
operator, Egs. (3) and (4), by increasing (decreasing) the fre-
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FIG. 3. The proposed experimental setup for implementing the
GQW. See the text for the description of the different components.
The upper part represents the staircase voltage that has to be applied
to the EOMbis to implement the time-dependent coin, and 7 is the
cavity round-trip time.

quency of the horizontal (vertical) polarization component of

the field. As for the unitary transformation, C, itis performed
by a half-wave plate (HWP) with a suitably oriented fast axis
[27]. Thus in a cavity round-trip a step of the QW is per-
formed. The optical cavity allows the repetition of the pro-
cess through feedback. The number of steps of the QW that
can be implemented depends on factors such as the technical
limitations of the EOM and on the losses of the cavity (this
last factor could be compensated by introducing gain in the
cavity, as in Ref. [25]). We address the interested reader to
Ref. [22] for more details. Let us remark that this simple
scheme is very close to what was actually performed in the
experiment of Bouwmeester et al. [25] (see Ref. [22] for a
full discussion).

We can take this scheme as a basis for the implementation
of the generalized QW. In order to perform the GQW, one
needs to implement the time-dependent unitary transforma-

tion C(¢), Eq. (24). This can be done by adding one optical

element between EOM and HWP to implement (C,)’, Eq.
(19). This is the role played by EOMbis in Fig. 3. Consider
first a single step of the GQW, i.e., that corresponding to

iteration 7. For this 7 one must implement (Cy), which can be
done in a straightforward way: The implementation simply
consists in the addition (subtraction) of ¢yt to the phase of
the horizontal (vertical) polarization component of the field.
This can be easily carried out, e.g., by introducing a second
EOM, EOMbis in Fig. 3, to which a suitable (constant) volt-

age is applied. Now, in order to implement C(z), this added
(subtracted) phase must be increased at each cavity round-
trip, what is done by applying a staircase voltage to EOMbis
(represented in Fig. 3): The voltage must remain constant
while the light pulse is traversing EOMbis, in order to
modify the phase and not the field frequency, and then be
rapidly increased for the phase increment takes the value
¢o(t+1) in the subsequent round-trip. We think that this
simple scheme, which can be implemented with current tech-
nology (it consists in adding a single element to the device
already used in Ref. [25]), could allow the experimental in-
vestigation of the GQW.
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V. A LONG-WAVELENGTH APPROXIMATION
TO THE GENERALIZED QUANTUM WALK

Up to now we have shown how the GQW can be alterna-
tively produced by means of a time-dependent coin, how it
could be experimentally implemented, and also how the
time-dependent coin can be used in the presence of phases in
the walker displacement for controlling or tuning the GQW.
Now we will try to get some insight into the physics of the
GQW by deriving a continuous version through a long-
wavelength approximation. In this way we derive a wave
equation that constitutes a continuous propagation analog of
the GQW. The analogy helps to visualize the kind of physical
process that produces the GQW.

We introduce here a long-wave approximation by follow-
ing the same lines as in Refs. [21,28]. Our starting point is
the recurrence equation

an(t + 1) - an(t_ 1) = \‘/;[an—l(t)e_id)ot_ an+1([)ei¢ol]’
(36)

where a,,(t) stands for both u,,(r) and d,,(z). In this way, Eq.
(36) corresponds to Eqs. (32) and (33) after the factors ¢*'%0
on the left-hand side have been neglected. [This approxima-
tion is perfectly justified. Perhaps it is more clearly seen if
instead of the unitary transformation (24), one uses

\; oiboli=(1/2)] Vi-p oiboli=(1/2)] )

= (ﬂ Z pemitol(112)] —igolr+(112)]

’f_

- \pe
In this case, the exponential factors we are neglecting do not
appear on the left-hand side, as in Egs. (32) and (33), but on
the right-hand side of these equations in the form e*®ol=(1/2)]
which can be approximated by ¢*'%’ for large enough ¢.] In
Refs. [21,28] it was shown that it is necessary to introduce
two discrete fields A (7) in order to preserve the symmetry of
the QW. Thus we define the new fields A% (¢) through

a,(1) = A5 (1) + (= )AL (1). (37)

By inserting this definition into Eq. (36), one immediately
obtains

A+ 1) = A2~ 1) = 2 \plAZ (e - A%, (0],
(38)

which is convenient to rewrite in the form

AX(t+ 1) = A%t = 1) = = Vp[AZ, (1)
— A%, (D]cos ot T iNp[AZ_ (1)
+A>, (D]sin pot. (39)

Denoting by x and 7 the continuous space and time variables,
respectively, and by Ax and Af the spacing between lattice
points and time between iterations, respectively, we can de-
fine the adimensional continuous variables é&=x/AX and 7= 7/
A7 and think of Eq. (39) as the discretization of the following
partial differential equation:
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1 Pk
2 -

oo 2k + 1)1 9!

A%(&,7)

. * 1 Phl
=¥ \p COS((}')OT)E) m@Ai(é 7)
= iVp sin(é T)i Lﬁﬁg 7 (40)
O Qr) ok T

which constitutes a continuous limit of the GQW.

Taking into account Eq. (37), and the fact that the discrete
fields a,(r) describe both u,(f) and d,(z), the continuous ver-
sions of these fields, which we denote by u(¢,7) and d(&, 7),
are calculated through

u(§n)=U"(&ED+ (- D'U(§7), (41)

d(§7)=D*(& 1)+ (- 1)'D (&), (42)

with U*(¢,7) and D*(&,7) the solutions of Eq. (40) for
A*(¢,7)=U*(¢&,7) and A*(€,7)=D*(&,7), respectively (see
the Appendix ).

The long-wavelength approximation consists in retaining
the lowest order in Eq. (40). Importantly, we further neglect
the third temporal derivative. We address the reader to the
Appendix for full details. After all of this, we are left with

g6 = % p| cohyr-+ L sintbor) 2
—B*(§,7)= /p| cos — + —sin —
PR 0T e ™ o NPT 2

+ é cos(¢07')£3]31(§, ), (43)

where the new fields B*(&, 7) defined by

B*(¢,1)=A%(¢&, T)exp{ ¥ i;Tp COS(¢OT):| , (44)
0
have been introduced. This equation can be solved analyti-
cally, and the explicit solution is derived in the Appendix .

We notice that Eq. (43) has time-periodic coefficients and,
consequently, as we have retained only the first derivative
with respect to time, their solutions are time periodic. We can
then expect that the solutions of Eq. (43) describe approxi-
mately the periodic solutions of the GQW, which appear
when ¢, is an irrational multiple of 27, but not the quasip-
eriodic solutions (¢, a rational multiple of 27) except in the
cases with very long quasiperiod. Obviously, this partial de-
scription of the solutions is the price to be paid after neglect-
ing the third time derivative in Eq. (40).

Before discussing the physical meaning of Eq. (43), let us
first compare the exact solution of the time-dependent coined
QW, Egs. (32) and (33), with the approximated continuous
solution we have just derived. In order to do that, we have
chosen a value for the phase ¢, (¢dy=27/150) for which the
quasiperiod T is very large (7=150 in this case). We have
taken symmetrical initial conditions too [i.e., uo(0)=1/2
and dy(0)=i/ \5]. For the continuous version, we will take
A*(&,0) to be a superposition of Gaussians with a width w
(see the Appendix for details).
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FIG. 4. A comparison of (a) an exact numerical evaluation of
Egs. (32) and (33) with (b), the long-wavelength approximation
derived in this section. Both calculations correspond to a value ¢y
= 2/150. Only even lattice points have been considered.

Figure 4 shows both the exact probability distribution
P,(1), Fig. 4(a), and the approximated continuous solution,
Fig. 4(b), for time running from ¢=10 to =140, at intervals
of 10 time units. For the exact probability distribution only
even points of the lattice, for which the probability is non-
zero, are shown and joined for an easier visualization. We
have chosen w=0.65 to evaluate P(&, 7). One sees how simi-
lar these distributions are, except for ¢ close to 7/2, where
the continuous distribution is wider. Then, the approximated
continuous solution can be considered as a good approxima-
tion for cases with periodic behavior or with quasiperiodic
behavior with very long transients.

Figure 4 is complemented with Fig. 5, where we show the
exact (n,P,(t)) (with even points joined again) on the top
row; the approximated (£,P(&,7)) on the bottom row; and
finally, in the middle row, the same as in the bottom row (i.e.,
the long-wavelength approximation) but evaluated only at
discrete position values for a better comparison of the previ-
ous two results. We do this for three different time values (
t=20, t=70, t=110). Again, as in Fig. 4, one sees how P, (1)
and P(&,7) are very similar, except near the semiperiod.

Finally, we compare the evolution of the quadratic devia-
tion ¢ in position using both the exact distribution P, (¢) and
the continuous distribution P(&, 7) in Fig. 6. We continue in
the dynamic localization case with ¢y=27/150, and com-
pare the exact case (a) with five continuous limit cases (b)
corresponding to w=0.45, w=0.55, w=0.65, w=0.75 and w
=0.85. Notice that the behaviors of both the exact case and
the continuous limit are similar, except for the fact that with
the continuous limit one obtains an “excess of quadratic de-
viation,” specially within the proximity of the semiperiod,
because of the already mentioned problem with the width.

The above results show that the continuous long-
wavelength approximation, Eq. (43), is a good qualitative
approximation, even a reasonably good quantitative approxi-
mation, to the GQW in the dynamical localization regime.
We have already commented that the failure in describing the
diffusive dynamics occurring in the GQW for rational values
of ¢, is due to the neglect of the third order time derivative
in deriving Eq. (43), an approximation made in order to ob-
tain analytical expressions.
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Eq. (43) is a linear wave equation describing the propa-
gation of waves in a medium with special dispersion proper-
ties: The dispersion coefficients (those multiplying the higher
order spatial derivatives) are time periodic, as well as the
wave group velocity (the coefficient multiplying the first or-
der spatial derivative). Thus, the essential for dynamical lo-
calization corresponds to the vanishing of the time-averaged
group velocity, while its periodic time dependence is respon-
sible for the “bouncing” of the probability distribution, see
Fig. 4. As for the rest of the spatial derivatives, they intro-
duce a distortion on the probability distribution (due to dis-
persion) that turns out to be reversible because of the time
periodicity of the coefficients. Certainly, a group velocity
that changes its sign periodically is not a common situation
for waves, but the analogy that Eq. (43) establishes provides
an alternative physical picture that, as we have seen, helps in
understanding dynamical localization in the GQW and could
help for the search of propagation phenomena in which this
phenomenon could manifest. In this sense, it is interesting to
notice the similarity between this equation and that describ-
ing beam propagation in waveguides with a bent axis [30],
an optical process in which Bloch oscillations and dynamical
localization have been recently experimentally observed [31]
(we note that in [5] the connection between the GQW and
Bloch oscillations was put forward).

VI. CONCLUSIONS

In this article we have introduced QWs with time depen-
dent coins. We have considered a particularly simple case

N\ @

0 150 t 300 0 150 T 300

FIG. 6. A plot of the quadratic deviation o2 in position using
both the exact distribution P,(¢) (left) and the continuous distribu-
tion P(&, 7) (right), again with ¢y=27/150. On the right panel, the
different curves correspond to w=0.45, w=0.55, w=0.65, w=0.75
and w=0.85.

that turns out to be equivalent to the generalized QW (GQW)
introduced by Wojcik er al. [5]. This GQW exhibits very
striking dynamical properties, particularly dynamical local-
ization. We have shown how our alternative proposal can be
used as a control mechanism. In addition, this time-
dependent QW is particularly interesting from the implemen-
tation point of view, as only simple actions on the coin—qubit
are required for that.

We have also obtained a long-wavelength continuous ap-
proximation of the GQW equations that have allowed us the
derivation of an approximated explicit continuous solution
that works quite well during the dynamic localization re-
gime. The continuous equation from which this solution was
derived is a linear partial differential equation describing
pulse propagation in a dispersive medium with periodical
time dependence in the dispersion coefficients. This continu-
ous limit has led us to interpret the main feature of GQW, the
dynamic localization, as a propagating solution in the disper-
sive medium with null mean value of its group velocity.
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APPENDIX

Now we perform the long-wavelength approximation that
consists of retaining terms up to k=1 in Eq. (40), i.e.,

or 3190 &7

- 1
=F\p COS(¢oT){§§+§;—€]A*(§,T)

*ivp sin(fﬁoT)[l * %%]Ai(f, 7). (A1)
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The third-order derivative on the left-hand side makes it
hard to obtain an analytical solution. In the case of the stan-
dard QW, the third time derivative was approximated by
making use of the lowest order expansion [k=0 in Eq. (40)]
[21], but in our case the time-dependent coefficient of the
remaining linear term renders this approach useless. We then
make a further approximation and neglect the third order
derivative in time. By making the change

BH(& 1) = A%(E, T)exp|: = i% COS(¢OT):| . (A2)

0

one obtains

Lpen=¥ (p[coswor)i L s

29
! costehn 2 |56 (A3)
+ - Y - 9 2
P Gl z T
which we pass to solve here.
By Fourier transforming Eq. (A3) one easily gets
+00 _
B(&7) = f dkBBE(k,0) e NPk, (A4)
olkr) = sin(¢or)k+ cos(¢p7) -1 , ~ sin(¢07)k3’
%o 2¢y 6o
(A5)
where
1 (™ )
B(k,0) =~ f dEB*(£,0)e <. (A6)
TJ

In order to solve the integral (A4), one must fix B=(&,0),
i.e., A*(£,0). Following [21], we assume that

A(1) = A, (1) = A;(0) + A;,(0), (A7)
and then, by using Eq. (37),
43000 = 510, a,(1)]. (A8)

Notice that a,(1) is evaluated from Egs. (25) and (26) once
the initial condition a,(0) has been fixed.

Here we consider, as usual, that the walker is initially
located at the origin of the lattice, i.e., a,(0)=0 Vn except
for n=0. Then in the continuous limit we take

A*(£,0) = ag(0)Gy(8) £ a,(1)G(§) £ a_,(1)G_1(&),
(A9)

where

(f—m)z]’ (AL0)

4n?

Gm(g) :Nexp|:_

with A a normalization constant that will be omitted in the
following. As in [21] we are assuming that Eq. (40) is correct
only for the long-wavelength components by taking an initial

PHYSICAL REVIEW A 73, 062304 (2006)

condition that “smears out” the lower-wavelength compo-
nents.
Now, by using Egs. (A2) and (A9), one easily obtains

B(k,0) = [ao(O) > am(l)exp(mik)]e_(Wzkzti‘;/%),
m==1

(A11)
and with this, the result of (A4) reads

BH(é7)= [aom)zr[ig, A D a,(1) 2 (¢~ mm}
m==1

Xe:i\fg—)/¢0’
where the functions Z*(&',7) are

(A12)

Z5(¢ 1= dq GXP{iaq - éﬂf -(1= iy)qz} .

-0

’ [
vV .

£ i),
w

how

a=

[

\p
Z(ﬁow3

B= sin(¢o7),

-
__\p
T 2¢pgw?

Their solutions read [29,21]

vy [cos(¢yT) — 1]. (A13)

1
B

1 —aB— v +2iy
= |B|4/3

Z5(¢.1= Aa)e’,

s

_ 3aB+2y-6
3P Fiy 35
where A,(z) is the Airy function.

Finally, by using Egs. (A12) and (A2), we can write down
the solution for the fields U*(&,7) and D*(&,7)

UH(E ) = {uom)zt[t Erle S un()Zx(E

, (A14)

m=x1

-m), T]}eﬁ‘”zy, (A15)

D) = {do(mzr[i £z S dy ()2

m==1

-m), T]}eﬂ’”’zy, (A16)

The total probability of finding the walker in the position £ at
time 7 can be easily calculated as

PE7) =P +PUE),

2
i

PUED =& D) = U5 0) + (= 1)U, (1)

PUED =1d(E D= |D}(0) + (- 'D, (0. (A17)
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